Art of Problem Solving

2008 AMC 10B Problems/Problem 7: Difference between revisions

No edit summary
Misof (talk | contribs)
No edit summary
Line 1: Line 1:
==Problem==
==Problem==
An equilateral triangle of side length 10 is completely filled with in by non overlapping equilateral triangles of side length 1. How many small triangles are required?  
An equilateral triangle of side length <math>10</math> is completely filled in by non-overlapping equilateral triangles of side length <math>1</math>. How many small triangles are required?


A) 10   B) 25   C) 100   D) 250   E) 1000
<math>\mathrm{(A)}\ 10\qquad\mathrm{(B)}\ 25\qquad\mathrm{(C)}\ 100\qquad\mathrm{(D)}\ 250\qquad\mathrm{(E)}\ 1000</math>


==Solution==
==Solution==
{{solution}}
 
<asy>
unitsize(0.5cm);
defaultpen(0.8);
for (int i=0; i<10; ++i) { draw( (i*dir(60)) -- ( (10,0) + (i*dir(120)) ) ); }
for (int i=0; i<10; ++i) { draw( (i*dir(0)) -- ( 10*dir(60) + (i*dir(-60)) ) ); }
for (int i=0; i<10; ++i) { draw( ((10-i)*dir(60)) -- ((10-i)*dir(0)) ); }
</asy>
 
The number of triangles is <math>1+3+\dots+19 = \boxed{100}</math>.


==See also==
==See also==
{{AMC10 box|year=2008|ab=B|num-b=6|num-a=8}}
{{AMC10 box|year=2008|ab=B|num-b=6|num-a=8}}

Revision as of 15:25, 25 January 2009

Problem

An equilateral triangle of side length $10$ is completely filled in by non-overlapping equilateral triangles of side length $1$. How many small triangles are required?

$\mathrm{(A)}\ 10\qquad\mathrm{(B)}\ 25\qquad\mathrm{(C)}\ 100\qquad\mathrm{(D)}\ 250\qquad\mathrm{(E)}\ 1000$

Solution

[asy] unitsize(0.5cm); defaultpen(0.8); for (int i=0; i<10; ++i) { draw( (i*dir(60)) -- ( (10,0) + (i*dir(120)) ) ); } for (int i=0; i<10; ++i) { draw( (i*dir(0)) -- ( 10*dir(60) + (i*dir(-60)) ) ); } for (int i=0; i<10; ++i) { draw( ((10-i)*dir(60)) -- ((10-i)*dir(0)) ); } [/asy]

The number of triangles is $1+3+\dots+19 = \boxed{100}$.

See also

2008 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions