1986 AJHSME Problems/Problem 14: Difference between revisions
No edit summary |
5849206328x (talk | contribs) |
||
| Line 11: | Line 11: | ||
Since <math>b</math> can be no larger than <math>1200</math>, <math>b = 1200</math>. Since <math>a</math> can be no less than <math>200</math>, <math>a = 200</math>. <math>\frac{1200}{200} = 6</math> | Since <math>b</math> can be no larger than <math>1200</math>, <math>b = 1200</math>. Since <math>a</math> can be no less than <math>200</math>, <math>a = 200</math>. <math>\frac{1200}{200} = 6</math> | ||
6 is C. | <math>6</math> is <math>\boxed{\text{C}}</math>. | ||
==See Also== | ==See Also== | ||
[[1986 AJHSME Problems]] | [[1986 AJHSME Problems]] | ||
Revision as of 17:37, 24 January 2009
Problem
If
and
, then the largest value of the quotient
is
Solution
Obviously,
will be largest if
is the largest it can be, and
is the smallest it can be.
Since
can be no larger than
,
. Since
can be no less than
,
.
is
.