2000 AIME II Problems/Problem 9: Difference between revisions
minor tex |
|||
| Line 3: | Line 3: | ||
== Solution == | == Solution == | ||
Note that if z is on the unit circle in the complex plane, then <math>z = e^{i\theta} = \cos \theta + i\sin \theta</math> and <math>\frac 1z= e^{-i\theta} = \cos \theta - i\sin \theta</math> | Note that if <math>z</math> is on the [[unit circle]] in the complex plane, then <math>z = e^{i\theta} = \cos \theta + i\sin \theta</math> and <math>\frac 1z= e^{-i\theta} = \cos \theta - i\sin \theta</math>. | ||
We have <math>z+\frac 1z = 2\cos \theta = 2\cos 3^\circ</math> and <math>\theta = 3^\circ</math> | We have <math>z+\frac 1z = 2\cos \theta = 2\cos 3^\circ</math> and <math>\theta = 3^\circ</math>. Alternatively, we could let <math>z = a + bi</math> and solve to get <math>z=\cos 3^\circ + i\sin 3^\circ</math>. | ||
Alternatively, we could let <math>z = a + bi</math> and solve to get <math>z=\cos 3^\circ + i\sin 3^\circ</math> | |||
Using [[De Moivre's Theorem]] we have <math>z^{2000} = \cos 6000^\circ + i\sin 6000^\circ</math>, <math>6000 = 16(360) + 240</math>, so | Using [[De Moivre's Theorem]] we have <math>z^{2000} = \cos 6000^\circ + i\sin 6000^\circ</math>, <math>6000 = 16(360) + 240</math>, so | ||
<math>z^{2000} = \cos 240^\circ + i\sin 240^\circ</math> | <math>z^{2000} = \cos 240^\circ + i\sin 240^\circ</math>. | ||
We want <math>z^{2000}+\frac 1{z^{2000}} = 2\cos 240^\circ = -1</math> | We want <math>z^{2000}+\frac 1{z^{2000}} = 2\cos 240^\circ = -1</math>. | ||
Finally, the least integer greater than <math>-1</math> is <math>\boxed{000}</math>. | Finally, the least integer greater than <math>-1</math> is <math>\boxed{000}</math>. | ||
== See also == | |||
{{AIME box|year=2000|n=II|num-b=8|num-a=10}} | {{AIME box|year=2000|n=II|num-b=8|num-a=10}} | ||
[[Category:Intermediate Algebra Problems]] | |||
Revision as of 09:28, 30 August 2008
Problem
Given that
is a complex number such that
, find the least integer that is greater than
.
Solution
Note that if
is on the unit circle in the complex plane, then
and
.
We have
and
. Alternatively, we could let
and solve to get
.
Using De Moivre's Theorem we have
,
, so
.
We want
.
Finally, the least integer greater than
is
.
See also
| 2000 AIME II (Problems • Answer Key • Resources) | ||
| Preceded by Problem 8 |
Followed by Problem 10 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||