Art of Problem Solving

2001 IMO Shortlist Problems/A1: Difference between revisions

1=2 (talk | contribs)
m Replacing page with '==Problem== {{problem}} ==Solution== {{solution}}'
mNo edit summary
Line 1: Line 1:
==Problem==
==Problem==
{{problem}}
Let <math>T</math> denote the set of all ordered triples <math>(p,q,r)</math> of nonnegative integers. Find all functions <math>f:T \rightarrow \mathbb{R}</math> such that
<center><math>f(p,q,r) = \begin{cases} 0 & \text{if} \; pqr = 0, \\
1 + \tfrac{1}{6}\{f(p + 1,q - 1,r) + f(p - 1,q + 1,r) & \\
+ f(p - 1,q,r + 1) + f(p + 1,q,r - 1) & \\
+ f(p,q + 1,r - 1) + f(p,q - 1,r + 1)\} & \text{otherwise.} \end{cases}</math></center>


==Solution==
==Solution==
{{solution}}
{{solution}}
== Resources ==
* [[2001 IMO Shortlist Problems]]
* [http://www.artofproblemsolving.com/Forum/viewtopic.php?t=17447 Discussion on AOPS/MathLinks]
[[Category:Olympiad Algebra Problems]]

Revision as of 17:26, 20 August 2008

Problem

Let $T$ denote the set of all ordered triples $(p,q,r)$ of nonnegative integers. Find all functions $f:T \rightarrow \mathbb{R}$ such that

$f(p,q,r) = \begin{cases} 0 & \text{if} \; pqr = 0, \\ 1 + \tfrac{1}{6}\{f(p + 1,q - 1,r) + f(p - 1,q + 1,r) & \\ + f(p - 1,q,r + 1) + f(p + 1,q,r - 1) & \\ + f(p,q + 1,r - 1) + f(p,q - 1,r + 1)\} & \text{otherwise.} \end{cases}$

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

Resources