2004 AMC 12A Problems/Problem 19: Difference between revisions
Chickendude (talk | contribs) m Added Box template for "see also" |
m minor fmt tex |
||
| Line 1: | Line 1: | ||
== Problem 19 == | == Problem 19 == | ||
[[Circle]]s <math>A, B</math> and <math>C</math> are externally tangent to each other, and internally tangent to circle <math>D</math>. Circles <math>B</math> and <math>C</math> are congruent. Circle <math>A</math> has radius <math>1</math> and passes through the center of <math>D</math>. What is the [[radius]] of circle <math>B</math>? | |||
<math>\text {(A)} \frac23 \qquad \text {(B)} \frac {\sqrt3}{2} \qquad \text {(C)}\frac78 \qquad \text {(D)}\frac89 \qquad \text {(E)}\frac {1 + \sqrt3}{3}</math> | <math>\text {(A)} \frac23 \qquad \text {(B)} \frac {\sqrt3}{2} \qquad \text {(C)}\frac78 \qquad \text {(D)}\frac89 \qquad \text {(E)}\frac {1 + \sqrt3}{3}</math> | ||
==Solution== | ==Solution== | ||
<asy> | <center><asy> | ||
unitsize(20mm); | unitsize(20mm); | ||
pair A=(0,1),B=(-8/9,-2/3),C=(8/9,-2/3),D=(0,0), E=(0,-2/3); | pair A=(0,1),B=(-8/9,-2/3),C=(8/9,-2/3),D=(0,0), E=(0,-2/3); | ||
| Line 29: | Line 29: | ||
label("\(r\)", (-4/9,-2/3),S); | label("\(r\)", (-4/9,-2/3),S); | ||
label("\(h\)", (0,-1/3),E); | label("\(h\)", (0,-1/3),E); | ||
</asy> | </asy></center> | ||
Note that <math>BD= 2-r</math> since D is the center of the larger circle of radius 2 | Note that <math>BD= 2-r</math> since <math>D</math> is the center of the larger circle of radius <math>2</math>. Using the Pythagorean Theorem on <math>\triangle BDE</math>, | ||
<cmath> | |||
\begin{align*} | |||
r^2 + h^2 &= (2-r)^2 \\ | |||
r^2 + h^2 &= 4 - 4r + r^2 \\ | |||
h^2 &= 4 - 4r \\ | |||
h &= 2\sqrt{1-r} \end{align*}</cmath> | |||
<math> | Now using the [[Pythagorean Theorem]] on <math>\triangle BAE</math>, | ||
< | <cmath> | ||
\begin{align*} | |||
r^2 + (h+1)^2 &= (r+1)^2 \\ | |||
r^2 + h^2 + 2h + 1 &= r^2 + 2r + 1 \\ | |||
h^2 + 2h &= 2r \end{align*} </cmath> | |||
<math>h | Substituting <math>h</math>, | ||
< | <cmath> | ||
\begin{align*} | |||
(4-4r) + 4\sqrt{1-r} &= 2r \\ | |||
4\sqrt{1-r} &= 6r - 4 \\ | |||
16-16r &= 36r^2 - 48r + 16 \\ | |||
0 &= 36r^2 - 32r \\ | |||
r &= \frac{32}{36} = \frac{8}{9} \Longrightarrow \qquad \textbf{(D)} \end{align*}</cmath> | |||
==See Also== | |||
{{AMC12 box|year=2004|ab=A|num-b=18|num-a=20}} | |||
[[Category:Introductory Geometry Problems]] | |||
Revision as of 15:40, 15 August 2008
Problem 19
Circles
and
are externally tangent to each other, and internally tangent to circle
. Circles
and
are congruent. Circle
has radius
and passes through the center of
. What is the radius of circle
?
Solution
![[asy] unitsize(20mm); pair A=(0,1),B=(-8/9,-2/3),C=(8/9,-2/3),D=(0,0), E=(0,-2/3); draw(Circle(D,2)); draw(Circle(A,1)); draw(Circle(B,8/9)); draw(Circle(C,8/9)); draw(A--B--C--A); draw(B--D--C); draw(A--E); dot(A);dot(B);dot(C);dot(D);dot(E); label("\(D\)", D,N); label("\(A\)", A,N); label("\(B\)", B,W); label("\(C\)", C,E); label("\(E\)", E,S); label("\(1\)",(-.4,.7)); label("\(1\)",(0,.5),E); label("\(r\)", (-.8,-.1)); label("\(r\)", (-4/9,-2/3),S); label("\(h\)", (0,-1/3),E); [/asy]](http://latex.artofproblemsolving.com/1/5/a/15a898fdbe29de1dab060b96b07d30a5b5fb17ab.png)
Note that
since
is the center of the larger circle of radius
. Using the Pythagorean Theorem on
,
Now using the Pythagorean Theorem on
,
Substituting
,
See Also
| 2004 AMC 12A (Problems • Answer Key • Resources) | |
| Preceded by Problem 18 |
Followed by Problem 20 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |