1996 AIME Problems/Problem 13: Difference between revisions
m →Problem |
solution |
||
| Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
In triangle <math>ABC</math>, <math>AB=\sqrt{30}</math>, <math>AC=\sqrt{6}</math>, and <math>BC=\sqrt{15}</math>. There is a point <math>D</math> for which <math>\overline{AD}</math> | In [[triangle]] <math>ABC</math>, <math>AB=\sqrt{30}</math>, <math>AC=\sqrt{6}</math>, and <math>BC=\sqrt{15}</math>. There is a point <math>D</math> for which <math>\overline{AD}</math> [[bisect]]s <math>\overline{BC}</math>, and <math>\angle ADB</math> is a right angle. The ratio | ||
<cmath>\dfrac{Area(\triangle ADB)}{Area(\triangle ABC)}</cmath> | <cmath>\dfrac{Area(\triangle ADB)}{Area(\triangle ABC)}</cmath> | ||
| Line 7: | Line 7: | ||
== Solution == | == Solution == | ||
{{ | <center><asy> | ||
pointpen = black; pathpen = black + linewidth(0.7); | |||
pair B=(0,0), C=(15^.5, 0), A=IP(CR(B,30^.5),CR(C,6^.5)), E=(B+C)/2, D=foot(B,A,E); | |||
D(MP("A",A)--MP("B",B,SW)--MP("C",C)--A--MP("D",D)--B); D(MP("E",E)); | |||
MP("\sqrt{30}",(A+B)/2,NW); MP("\sqrt{6}",(A+C)/2,SE); MP("\frac{\sqrt{15}}2",(E+C)/2); D(rightanglemark(B,D,A)); | |||
</asy></center> | |||
Let <math>E</math> be the midpoint of <math>\overline{BC}</math>. Since <math>BE = EC</math>, then <math>\triangle ABE</math> and <math>\triangle AEC</math> share the same height and have equal bases, and thus have the same area. Similarly, <math>\triangle BDE</math> and <math>BAE</math> share the same height, and have bases in the ratio <math>DE : AE</math>, so <math>\frac{[BDE]}{[BAE]} = \frac{DE}{AE}</math> (where <math>[\triangle \cdots]</math> denotes area; the concept of comparing bases and heights is known as area ratios). Now, | |||
<center><math>\dfrac{[ADB]}{[ABC]} = \frac{[ABE] + [BDE]}{2[ABE]} = \frac{1}{2} + \frac{DE}{2AE}.</math></center> | |||
By [[Stewart's Theorem]], <math>AE = \frac{\sqrt{2(AB^2 + AC^2) - BC^2}}2 = \frac{\sqrt {57}}{2}</math>, and by the [[Pythagorean Theorem]] on <math>\triangle ABD, \triangle EBD</math>, | |||
<center><math>\begin{align*} | |||
BD^2 + \left(DE + \frac {\sqrt{57}}2\right)^2 &= 30 \\ | |||
BD^2 + DE^2 &= \frac{15}{4} \\ | |||
\end{align*}</math></center> | |||
Subtracting the two equations yields <math>DE\sqrt{57} + \frac{57}{4} = \frac{105}{4} \Longrightarrow DE = \frac{12}{\sqrt{57}}</math>. Then <math>\frac mn = \frac{1}{2} + \frac{DE}{2AE} = \frac{1}{2} + \frac{\frac{12}{\sqrt{57}}}{2 \cdot \frac{\sqrt{57}}{2}} = \frac{27}{38}</math>, and <math>m+n = \boxed{065}</math>. | |||
== See also == | == See also == | ||
{{AIME box|year=1996|num-b=12|num-a=14}} | |||
[[Category:Intermediate Geometry Problems]] | |||
Revision as of 15:30, 29 July 2008
Problem
In triangle
,
,
, and
. There is a point
for which
bisects
, and
is a right angle. The ratio
can be written in the form
, where
and
are relatively prime positive integers. Find
.
Solution
![[asy] pointpen = black; pathpen = black + linewidth(0.7); pair B=(0,0), C=(15^.5, 0), A=IP(CR(B,30^.5),CR(C,6^.5)), E=(B+C)/2, D=foot(B,A,E); D(MP("A",A)--MP("B",B,SW)--MP("C",C)--A--MP("D",D)--B); D(MP("E",E)); MP("\sqrt{30}",(A+B)/2,NW); MP("\sqrt{6}",(A+C)/2,SE); MP("\frac{\sqrt{15}}2",(E+C)/2); D(rightanglemark(B,D,A)); [/asy]](http://latex.artofproblemsolving.com/7/e/9/7e995d2f972dad7f2aefe99478218d9c0a690451.png)
Let
be the midpoint of
. Since
, then
and
share the same height and have equal bases, and thus have the same area. Similarly,
and
share the same height, and have bases in the ratio
, so
(where
denotes area; the concept of comparing bases and heights is known as area ratios). Now,
By Stewart's Theorem,
, and by the Pythagorean Theorem on
,
BD^2 + \left(DE + \frac {\sqrt{57}}2\right)^2 &= 30 \\ BD^2 + DE^2 &= \frac{15}{4} \\
\end{align*}$ (Error compiling LaTeX. Unknown error_msg)Subtracting the two equations yields
. Then
, and
.
See also
| 1996 AIME (Problems • Answer Key • Resources) | ||
| Preceded by Problem 12 |
Followed by Problem 14 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||