Art of Problem Solving

2022 AMC 10B Problems/Problem 2: Difference between revisions

Danyo (talk | contribs)
Danyo (talk | contribs)
Line 1: Line 1:
{{duplicate|[[2022 AMC 10B Problems/Problem 2|2022 AMC 10B #2]] and [[2022 AMC 12B Problems/Problem 2|2022 AMC 12B #2]]}}
==Solution Made Complicated==


==Problem==
We find that <imath>AP + DP = 5 = AD</imath>.
Because <imath>ABCD</imath> is a rhombus, we get that AD = AB = 5.
Notice that using Pythagorean Theorem, we have that <imath> AB^2 = AP^2 + BP^2 </imath>, which simplifies to <imath> 25 = AP^2 + 9 ==> AP = sqrt(16) = 4 </imath>.


In rhombus <imath>ABCD</imath>, point <imath>P</imath> lies on segment <imath>\overline{AD}</imath> so that <imath>\overline{BP}</imath> <imath>\perp</imath> <imath>\overline{AD}</imath>, <imath>AP = 3</imath>, and <imath>PD = 2</imath>. What is the area of <imath>ABCD</imath>? (Note: The figure is not drawn to scale.)
Now, by spliting the rhombus into
 
<asy>
import olympiad;
size(180);
real r = 3, s = 5, t = sqrt(r*r+s*s);
defaultpen(linewidth(0.6) + fontsize(10));
pair A = (0,0), B = (r,s), C = (r+t,s), D = (t,0), P = (r,0);
draw(A--B--C--D--A^^B--P^^rightanglemark(B,P,D));
label("$A$",A,SW);
label("$B$", B, NW);
label("$C$",C,NE);
label("$D$",D,SE);
label("$P$",P,S);
</asy>
 
<imath>\textbf{(A) }3\sqrt 5 \qquad
\textbf{(B) }10 \qquad
\textbf{(C) }6\sqrt 5 \qquad
\textbf{(D) }20\qquad
\textbf{(E) }25</imath>
 
==Solution 1==
 
<asy>
pair A = (0,0);
label("$A$", A, SW);
pair B = (2.25,3);
label("$B$", B, NW);
pair C = (6,3);
label("$C$", C, NE);
pair D = (3.75,0);
label("$D$", D, SE);
pair P = (2.25,0);
label("$P$", P, S);
draw(A--B--C--D--cycle);
draw(P--B);
draw(rightanglemark(B,P,D));
</asy>
 
<cmath>\textbf{Figure redrawn to scale.}</cmath>
 
<imath>AD = AP + PD = 3 + 2 = 5</imath>.
 
<imath>ABCD</imath> is a rhombus, so <imath>AB = AD = 5</imath>.
 
<imath>\bigtriangleup APB</imath> is a <imath>3-4-5</imath> right triangle, hence <imath>BP = 4</imath>.
 
The area of the rhombus is base times height: <imath>bh = (AD)(BP) = 5 \cdot 4 = \boxed{\textbf{(D) }20}</imath>.
 
~richiedelgado
 
==Solution 2 (The Area Of A Triangle)==
<asy>
pair A = (0,0);
label("$A$", A, SW);
pair B = (2.25,3);
label("$B$", B, NW);
pair C = (6,3);
label("$C$", C, NE);
pair D = (3.75,0);
label("$D$", D, SE);
pair P = (2.25,0);
label("$P$", P, S);
draw(A--B--C--D--cycle);
draw(D--B);
draw(B--P);
draw(rightanglemark(B,P,D));
</asy>
 
The diagram is from as Solution 1,  but a line is constructed at <imath>BD</imath>.
 
When it comes to the sides of a rhombus, their opposite sides are congruent and parallel. This means that <imath>\angle ABD \cong \angle BDC</imath>, by the Alternate Interior Angles Theorem.
 
By SAS Congruence, we get <imath>\triangle ABD \cong \triangle BDC</imath>.
 
Since <imath>AP=3</imath> and <imath>AB=5</imath>, we know that <imath>BP=4</imath> because <imath>\triangle APB</imath> is a 3-4-5 right triangle, as stated in Solution 1.
 
The area of <imath>\triangle ABD</imath> would be <imath>10</imath>, since the area of the triangle is <imath>\frac{bh}{2}</imath>.
 
Since we know that <imath>\triangle ABD \cong \triangle BDC</imath> and that <imath>ABCD=\triangle ABD + \triangle BDC</imath>, so we can double the area of <imath>\triangle ADB</imath> to get <imath>10 \cdot 2 = \boxed{\textbf{(D) }20}</imath>.
 
~ghfhgvghj10, minor edits by MinecraftPlayer404
 
==Video Solution 1==
https://youtu.be/Io_GhJ6Zr_U
 
~Education, the Study of Everything
 
==Video Solution(1-16)==
https://youtu.be/SCwQ9jUfr0g
 
~~Hayabusa1
==Video Solution by Interstigation==
https://youtu.be/_KNR0JV5rdI?t=97
 
== See Also ==
 
{{AMC10 box|year=2022|ab=B|num-b=1|num-a=3}}
{{AMC12 box|year=2022|ab=B|num-b=1|num-a=3}}
{{MAA Notice}}

Revision as of 21:21, 9 November 2025

Solution Made Complicated

We find that $AP + DP = 5 = AD$. Because $ABCD$ is a rhombus, we get that AD = AB = 5. Notice that using Pythagorean Theorem, we have that $AB^2 = AP^2 + BP^2$, which simplifies to $25 = AP^2 + 9 ==> AP = sqrt(16) = 4$.

Now, by spliting the rhombus into