2002 AIME II Problems/Problem 13: Difference between revisions
I like pie (talk | contribs) mNo edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
In triangle <math>ABC,</math> point <math>D</math> is on <math>\overline{BC}</math> with <math>CD = 2</math> and <math>DB = 5,</math> point <math>E</math> is on <math>\overline{AC}</math> with <math>CE = 1</math> and <math>EA = | In triangle <math>ABC,</math> point <math>D</math> is on <math>\overline{BC}</math> with <math>CD = 2</math> and <math>DB = 5,</math> point <math>E</math> is on <math>\overline{AC}</math> with <math>CE = 1</math> and <math>EA = 3,</math> <math>AB = 8,</math> and <math>\overline{AD}</math> and <math>\overline{BE}</math> intersect at <math>P.</math> Points <math>Q</math> and <math>R</math> lie on <math>\overline{AB}</math> so that <math>\overline{PQ}</math> is parallel to <math>\overline{CA}</math> and <math>\overline{PR}</math> is parallel to <math>\overline{CB}.</math> It is given that the ratio of the area of triangle <math>PQR</math> to the area of triangle <math>ABC</math> is <math>m/n,</math> where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m + n</math>. | ||
== Solution == | == Solution == | ||
{{ | Let <math>X</math> be the intersection of <math>\overline{CP}</math> and <math>\overline{AB}</math>. | ||
<asy> | |||
size(10cm); | |||
pair A,B,C,D,E,X,P,Q,R; | |||
A=(0,0); | |||
B=(8,0); | |||
C=(1.9375,3.4994); | |||
D=(3.6696,2.4996); | |||
E=(1.4531,2.6246); | |||
X=(4.3636,0); | |||
P=(2.9639,2.0189); | |||
Q=(1.8462,0); | |||
R=(6.4615,0); | |||
dot(A); | |||
dot(B); | |||
dot(C); | |||
dot(D); | |||
dot(E); | |||
dot(X); | |||
dot(P); | |||
dot(Q); | |||
dot(R); | |||
label("$A$",A,WSW); | |||
label("$B$",B,ESE); | |||
label("$C$",C,NNW); | |||
label("$D$",D,NE); | |||
label("$E$",E,WNW); | |||
label("$X$",X,SSE); | |||
label("$P$",P,NNE); | |||
label("$Q$",Q,SSW); | |||
label("$R$",R,SE); | |||
draw(A--B--C--cycle); | |||
draw(P--Q--R--cycle); | |||
draw(A--D); | |||
draw(B--E); | |||
draw(C--X); | |||
</asy> | |||
Since <math>\overline{PQ} \parallel \overline{CA}</math> and <math>\overline{PR} \parallel \overline{CB}</math>, <math>\angle CAB = \angle PQR</math> and <math>\angle CBA = \angle PRQ</math>. So <math>\Delta ABC \sim \Delta QRP</math>, and thus, <math>\frac{[\Delta PQR]}{[\Delta ABC]} = \left(\frac{PX}{CX}\right)^2</math>. | |||
Using [[mass points]]: | |||
[[WLOG]], let <math>W_C=15</math>. | |||
Then: | |||
<math>W_A = \left(\frac{CE}{AE}\right)W_C = \frac{1}{3}\cdot15=5</math>. | |||
<math>W_B = \left(\frac{CD}{BD}\right)W_C = \frac{2}{5}\cdot15=6</math>. | |||
<math>W_X=W_A+W_B=5+6=11</math>. | |||
<math>W_P=W_C+W_X=15+11=26</math>. | |||
Thus, <math>\frac{PX}{CX}=\frac{W_C}{W_P}=\frac{15}{26}</math>. Therefore, <math>\frac{[\Delta PQR]}{[\Delta ABC]} = \left( \frac{15}{26} \right)^2 = \frac{225}{676}</math>, and <math>m+n=\boxed{901}</math>. | |||
== See also == | == See also == | ||
{{AIME box|year=2002|n=II|num-b=12|num-a=14}} | {{AIME box|year=2002|n=II|num-b=12|num-a=14}} | ||
Revision as of 22:43, 24 June 2008
Problem
In triangle
point
is on
with
and
point
is on
with
and
and
and
intersect at
Points
and
lie on
so that
is parallel to
and
is parallel to
It is given that the ratio of the area of triangle
to the area of triangle
is
where
and
are relatively prime positive integers. Find
.
Solution
Let
be the intersection of
and
.
Since
and
,
and
. So
, and thus,
.
Using mass points:
WLOG, let
.
Then:
.
.
.
.
Thus,
. Therefore,
, and
.
See also
| 2002 AIME II (Problems • Answer Key • Resources) | ||
| Preceded by Problem 12 |
Followed by Problem 14 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||