2025 AMC 12A Problems/Problem 25: Difference between revisions
Tiankaizhang (talk | contribs) Undo revision 266770 by Tiankaizhang (talk) Tag: Undo |
Tiankaizhang (talk | contribs) |
||
| Line 2: | Line 2: | ||
==Solution 1 == | ==Solution 1 == | ||
We are told that <imath>f(x) = \tfrac{P(x)}{Q(x)}</imath>, where <imath>P</imath> and <imath>Q</imath> are monic cubics whose roots are elements of <imath>\{1,2,3,4,5\}</imath>. The function satisfies | |||
<cmath> | |||
\{x : f(x) \le 0\} = [a,b] \cup (c,d) | |||
</cmath> | |||
for some real numbers <imath>a < b < c < d</imath>. | |||
From the given information, <imath>f(x)</imath> changes sign only at <imath>a,b,c,d</imath>. | |||
- <imath> | Thus: | ||
- <imath>a,b</imath> are zeros of <imath>f(x)</imath>. | |||
- <imath>c,d</imath> are poles (values where the denominator is zero). | |||
The sign pattern of <imath>f(x)</imath> is: | |||
<cmath> | <cmath> | ||
(+)\ a\ (−)\ b\ (+)\ c\ (−)\ d\ (+), | |||
</cmath> | </cmath> | ||
so <imath>f(x)</imath> is positive outside <imath>[a,b]\cup(c,d)</imath> and nonpositive on those intervals. | |||
===Step 1. General Form=== | |||
Because <imath>P</imath> and <imath>Q</imath> are monic cubics, we can write | |||
< | |||
</ | |||
< | |||
</ | |||
<cmath> | <cmath> | ||
f(x) = \frac{(x-a)(x-b)(x-t)}{(x-c)(x-d)(x-t)} | |||
</cmath> | </cmath> | ||
for some <imath>t</imath>. | |||
This keeps both numerator and denominator degree 3. | |||
-- | To prevent any additional sign changes, the extra factor <imath>\frac{x-t}{x-t}</imath> must remain positive, so <imath>t</imath> must either equal <imath>c</imath> or <imath>d</imath>, or lie outside <imath>[a,b]\cup(c,d)</imath>. | ||
===Step 2. Counting Possible <imath>(a,b,c,d,t)</imath>=== | |||
We must select four distinct values <imath>a<b<c<d</imath> from <imath>\{1,2,3,4,5\}</imath>: | |||
<cmath> | <cmath> | ||
\binom{5}{4} = 5 | \binom{5}{4} = 5 | ||
</cmath> | </cmath> | ||
possible sets: | |||
<cmath> | <cmath> | ||
[1,2]\cup(3,4), \quad [1,2]\cup(3,5), \quad [1,2]\cup(4,5), \quad [1,3]\cup(4,5), \quad [2,3]\cup(4,5). | [1,2]\cup(3,4), \quad [1,2]\cup(3,5), \quad [1,2]\cup(4,5), \quad [1,3]\cup(4,5), \quad [2,3]\cup(4,5). | ||
</cmath> | </cmath> | ||
For each case, we count valid <imath>t</imath> values. | |||
*Case 1:* <imath>[1,2]\cup(3,4)</imath> | |||
<imath>t | <imath>t = 3, 4, 5</imath> <imath>\Rightarrow</imath> 3 functions. | ||
*Case 2:* <imath>[1,2]\cup(3,5)</imath> | |||
<imath>t | <imath>t = 3, 5</imath> <imath>\Rightarrow</imath> 2 functions. | ||
*Case 3:* <imath>[1,2]\cup(4,5)</imath> | |||
<imath>t | <imath>t = 3, 4, 5</imath> <imath>\Rightarrow</imath> 3 functions. | ||
*Case 4:* <imath>[1,3]\cup(4,5)</imath> | |||
<imath>t | <imath>t = 4, 5</imath> <imath>\Rightarrow</imath> 2 functions. | ||
*Case 5:* <imath>[2,3]\cup(4,5)</imath> | |||
<imath>t | <imath>t = 1, 4, 5</imath> <imath>\Rightarrow</imath> 3 functions. | ||
Adding up all cases: | |||
<cmath> | <cmath> | ||
3 + 2 + 3 + 2 + 3 = 13. | 3 + 2 + 3 + 2 + 3 = 13. | ||
</cmath> | </cmath> | ||
-Victor Zhang | |||
Therefore, there are <imath>\boxed{13}</imath> possible functions <imath>f(x)</imath>, which corresponds to <imath>\boxed{\textbf{(E)}}</imath>. | |||
- Victor Zhang | |||
==Video Solution 1 by OmegaLearn== | ==Video Solution 1 by OmegaLearn== | ||
https://youtu.be/SPbTyq3Dz_0 | https://youtu.be/SPbTyq3Dz_0 | ||
Revision as of 02:30, 7 November 2025
Polynomials
and
each have degree
and leading coefficient
, and their roots are all elements of
. The function
has the property that there exist real numbers
such that the set of all real numbers
such that
consists of the closed interval
together with the open interval
. How many functions
are possible?
Solution 1
We are told that
, where
and
are monic cubics whose roots are elements of
. The function satisfies
for some real numbers
.
From the given information,
changes sign only at
.
Thus:
-
are zeros of
.
-
are poles (values where the denominator is zero).
The sign pattern of
is:
\[(+)\ a\ (−)\ b\ (+)\ c\ (−)\ d\ (+),\] (Error compiling LaTeX. Unknown error_msg)
so
is positive outside
and nonpositive on those intervals.
Step 1. General Form
Because
and
are monic cubics, we can write
for some
.
This keeps both numerator and denominator degree 3.
To prevent any additional sign changes, the extra factor
must remain positive, so
must either equal
or
, or lie outside
.
Step 2. Counting Possible 
We must select four distinct values
from
:
possible sets:
For each case, we count valid
values.
- Case 1:*
![$[1,2]\cup(3,4)$](//latex-new.aopstest.com/c/d/1/cd1fd85db1157a27ef3aa4184d8d421ad6206778.png)
3 functions.
- Case 2:*
![$[1,2]\cup(3,5)$](//latex-new.aopstest.com/c/c/9/cc9e0b4dcb6f68b5ee589b76d0af05d0b8f6cedd.png)
2 functions.
- Case 3:*
![$[1,2]\cup(4,5)$](//latex-new.aopstest.com/1/b/a/1ba35087a58df324622074c4d942fb35502adc56.png)
3 functions.
- Case 4:*
![$[1,3]\cup(4,5)$](//latex-new.aopstest.com/5/9/d/59dfdb005350637a5e72542dc1507abec272dc54.png)
2 functions.
- Case 5:*
![$[2,3]\cup(4,5)$](//latex-new.aopstest.com/5/9/a/59adf58ab80ba15a2e8d9d51aa3ec5cee5ea29a3.png)
3 functions.
Adding up all cases:
Therefore, there are
possible functions
, which corresponds to
.
- Victor Zhang