Art of Problem Solving

2025 AMC 12A Problems/Problem 25: Difference between revisions

Tiankaizhang (talk | contribs)
Undo revision 266770 by Tiankaizhang (talk)
Tag: Undo
Tiankaizhang (talk | contribs)
Line 2: Line 2:


==Solution 1 ==
==Solution 1 ==
We are told that <imath>f(x) = \tfrac{P(x)}{Q(x)}</imath>, where <imath>P</imath> and <imath>Q</imath> are monic cubics whose roots are elements of <imath>\{1,2,3,4,5\}</imath>. The function satisfies
<cmath>
\{x : f(x) \le 0\} = [a,b] \cup (c,d)
</cmath>
for some real numbers <imath>a < b < c < d</imath>.


We begin by analyzing the sign chart. From the condition <imath>f(x) \le 0</imath> on <imath>[a,b] \cup (c,d)</imath> and <imath>f(x) > 0</imath> elsewhere, we deduce the following:


- <imath>a</imath> and <imath>b</imath> are zeros of <imath>f</imath>, since we transition from <imath>f>0</imath> to <imath>f\le0</imath> at <imath>a</imath>, and from <imath>f\le0</imath> to <imath>f>0</imath> at <imath>b</imath>.
From the given information, <imath>f(x)</imath> changes sign only at <imath>a,b,c,d</imath>.
- <imath>c</imath> and <imath>d</imath> are poles or holes of <imath>f</imath>, since on <imath>(c,d)</imath> we have <imath>f\le0</imath>, while immediately outside that interval <imath>f>0</imath>.
Thus:
- <imath>a,b</imath> are zeros of <imath>f(x)</imath>.
- <imath>c,d</imath> are poles (values where the denominator is zero).


Thus, the sign pattern of <imath>f(x)</imath> is
The sign pattern of <imath>f(x)</imath> is:
<cmath>
<cmath>
\begin{array}{cccccccccc}
(+)\ a\ ()\ b\ (+)\ c\ ()\ d\ (+),
& (-\infty, a) & a & (a,b) & b & (b,c) & c & (c,d) & d & (d,\infty) \\
f(x) & + & 0 & - & 0 & + & \text{pole} & - & \text{pole} & +
\end{array}
</cmath>
</cmath>
so <imath>f(x)</imath> is positive outside <imath>[a,b]\cup(c,d)</imath> and nonpositive on those intervals.


---


**Step 2. Structure of <imath>f(x)</imath>**


According to the given conditions, we can express
===Step 1. General Form===
<cmath>
Because <imath>P</imath> and <imath>Q</imath> are monic cubics, we can write
f(x) = \frac{(x-p_1)(x-p_2)(x-p_3)}{(x-q_1)(x-q_2)(x-q_3)}.
</cmath>
Combining this with the sign analysis, we can write
<cmath>
f(x) = \frac{(x-a)(x-b)(x-p_3)}{(x-c)(x-d)(x-q_3)}.
</cmath>
We can separate this into two factors:
<cmath>
f(x) = \frac{(x-a)(x-b)}{(x-c)(x-d)} \cdot \frac{x-p_3}{x-q_3}.
</cmath>
Define
<cmath>
<cmath>
f_1(x) = \frac{(x-a)(x-b)}{(x-c)(x-d)}, \qquad f_2(x) = \frac{x-p_3}{x-q_3}.
f(x) = \frac{(x-a)(x-b)(x-t)}{(x-c)(x-d)(x-t)}
</cmath>
</cmath>
for some <imath>t</imath>. 
This keeps both numerator and denominator degree 3.


---
To prevent any additional sign changes, the extra factor <imath>\frac{x-t}{x-t}</imath> must remain positive, so <imath>t</imath> must either equal <imath>c</imath> or <imath>d</imath>, or lie outside <imath>[a,b]\cup(c,d)</imath>.
 
**Step 3. Determining <imath>p_3</imath> and <imath>q_3</imath>**


By analyzing the sign changes of <imath>f_1(x)</imath>, we see that it already matches the required sign pattern for <imath>f(x)</imath>. Therefore, <imath>f_2(x)</imath> must remain positive on every interval; otherwise, it would introduce extra sign changes.


This means <imath>p_3 = q_3</imath>, since if <imath>p_3 \ne q_3</imath>, the factor <imath>\frac{x-p_3}{x-q_3}</imath> would change sign between <imath>p_3</imath> and <imath>q_3</imath>. 
Let <imath>p_3 = q_3 = t</imath>.


Furthermore:
===Step 2. Counting Possible <imath>(a,b,c,d,t)</imath>===
- <imath>t</imath> cannot lie within <imath>[a,b] \cup (c,d)</imath>, since that would alter the set <imath>\{x : f(x) \le 0\}</imath>.
We must select four distinct values <imath>a<b<c<d</imath> from <imath>\{1,2,3,4,5\}</imath>:
- <imath>t</imath> cannot be equal to <imath>a</imath> or <imath>b</imath>, since that would make those endpoints holes (discontinuities), contradicting that <imath>[a,b]</imath> is a *closed* interval.
 
Hence, <imath>t</imath> must either be equal to <imath>c</imath> or <imath>d</imath>, or lie outside <imath>[a,b] \cup (c,d)</imath>.
 
---
 
**Step 4. Possible values of <imath>a,b,c,d,t</imath>**
 
Given <imath>a<b<c<d</imath> and <imath>\{x : f(x) \le 0\} = [a,b] \cup (c,d)</imath>, we choose four distinct numbers from <imath>\{1,2,3,4,5\}</imath> for <imath>a,b,c,d</imath>:
<cmath>
<cmath>
\binom{5}{4} = 5.
\binom{5}{4} = 5
</cmath>
</cmath>
The five possible cases are:
possible sets:
<cmath>
<cmath>
[1,2]\cup(3,4), \quad [1,2]\cup(3,5), \quad [1,2]\cup(4,5), \quad [1,3]\cup(4,5), \quad [2,3]\cup(4,5).
[1,2]\cup(3,4), \quad [1,2]\cup(3,5), \quad [1,2]\cup(4,5), \quad [1,3]\cup(4,5), \quad [2,3]\cup(4,5).
</cmath>
</cmath>


---
For each case, we count valid <imath>t</imath> values.


**Case 1:** <imath>[1,2]\cup(3,4)</imath>   
*Case 1:* <imath>[1,2]\cup(3,4)</imath>   
<imath>t</imath> can be <imath>3</imath>, <imath>4</imath>, or <imath>5</imath>, giving 3 functions:
<imath>t = 3, 4, 5</imath> <imath>\Rightarrow</imath> 3 functions.
<cmath>
f(x) = \frac{(x-1)(x-2)(x-3)}{(x-3)(x-4)(x-3)}, \quad
f(x) = \frac{(x-1)(x-2)(x-4)}{(x-3)(x-4)(x-4)}, \quad
f(x) = \frac{(x-1)(x-2)(x-5)}{(x-3)(x-4)(x-5)}.
</cmath>


**Case 2:** <imath>[1,2]\cup(3,5)</imath>   
*Case 2:* <imath>[1,2]\cup(3,5)</imath>   
<imath>t</imath> can be <imath>3</imath> or <imath>5</imath>, giving 2 functions:
<imath>t = 3, 5</imath> <imath>\Rightarrow</imath> 2 functions.
<cmath>
f(x) = \frac{(x-1)(x-2)(x-3)}{(x-3)(x-5)(x-3)}, \quad
f(x) = \frac{(x-1)(x-2)(x-5)}{(x-3)(x-5)(x-5)}.
</cmath>


**Case 3:** <imath>[1,2]\cup(4,5)</imath>   
*Case 3:* <imath>[1,2]\cup(4,5)</imath>   
<imath>t</imath> can be <imath>3</imath>, <imath>4</imath>, or <imath>5</imath>, giving 3 functions:
<imath>t = 3, 4, 5</imath> <imath>\Rightarrow</imath> 3 functions.
<cmath>
f(x) = \frac{(x-1)(x-2)(x-3)}{(x-4)(x-5)(x-3)}, \quad
f(x) = \frac{(x-1)(x-2)(x-4)}{(x-4)(x-5)(x-4)}, \quad
f(x) = \frac{(x-1)(x-2)(x-5)}{(x-4)(x-5)(x-5)}.
</cmath>


**Case 4:** <imath>[1,3]\cup(4,5)</imath>   
*Case 4:* <imath>[1,3]\cup(4,5)</imath>   
<imath>t</imath> can be <imath>4</imath> or <imath>5</imath>, giving 2 functions:
<imath>t = 4, 5</imath> <imath>\Rightarrow</imath> 2 functions.
<cmath>
f(x) = \frac{(x-1)(x-3)(x-4)}{(x-4)(x-5)(x-4)}, \quad
f(x) = \frac{(x-1)(x-3)(x-5)}{(x-4)(x-5)(x-5)}.
</cmath>


**Case 5:** <imath>[2,3]\cup(4,5)</imath>   
*Case 5:* <imath>[2,3]\cup(4,5)</imath>   
<imath>t</imath> can be <imath>1</imath>, <imath>4</imath>, or <imath>5</imath>, giving 3 functions:
<imath>t = 1, 4, 5</imath> <imath>\Rightarrow</imath> 3 functions.
<cmath>
f(x) = \frac{(x-2)(x-3)(x-1)}{(x-4)(x-5)(x-1)}, \quad
f(x) = \frac{(x-2)(x-3)(x-4)}{(x-4)(x-5)(x-4)}, \quad
f(x) = \frac{(x-2)(x-3)(x-5)}{(x-4)(x-5)(x-5)}.
</cmath>


---


**Step 5. Final Answer**


Summing all possible cases:
Adding up all cases:
<cmath>
<cmath>
3 + 2 + 3 + 2 + 3 = 13.
3 + 2 + 3 + 2 + 3 = 13.
</cmath>
</cmath>
Thus, there are <imath>\boxed{13}</imath> possible functions <imath>f(x)</imath>, corresponding to choice <imath>\boxed{E}</imath>.


-Victor Zhang
 
 
Therefore, there are <imath>\boxed{13}</imath> possible functions <imath>f(x)</imath>, which corresponds to <imath>\boxed{\textbf{(E)}}</imath>.
 
- Victor Zhang


==Video Solution 1 by OmegaLearn==
==Video Solution 1 by OmegaLearn==
https://youtu.be/SPbTyq3Dz_0
https://youtu.be/SPbTyq3Dz_0

Revision as of 02:30, 7 November 2025

Polynomials $P(x)$ and $Q(x)$ each have degree $3$ and leading coefficient $1$, and their roots are all elements of $\{1,2,3,4,5\}$. The function $f(x) = \tfrac{P(x)}{Q(x)}$ has the property that there exist real numbers $a < b < c < d$ such that the set of all real numbers $x$ such that $f(x) \leq 0$ consists of the closed interval $[a,b]$ together with the open interval $(c,d)$. How many functions $f(x)$ are possible?

Solution 1

We are told that $f(x) = \tfrac{P(x)}{Q(x)}$, where $P$ and $Q$ are monic cubics whose roots are elements of $\{1,2,3,4,5\}$. The function satisfies \[\{x : f(x) \le 0\} = [a,b] \cup (c,d)\] for some real numbers $a < b < c < d$.


From the given information, $f(x)$ changes sign only at $a,b,c,d$. Thus: - $a,b$ are zeros of $f(x)$. - $c,d$ are poles (values where the denominator is zero).

The sign pattern of $f(x)$ is:

\[(+)\ a\ (−)\ b\ (+)\ c\ (−)\ d\ (+),\] (Error compiling LaTeX. Unknown error_msg)

so $f(x)$ is positive outside $[a,b]\cup(c,d)$ and nonpositive on those intervals.


Step 1. General Form

Because $P$ and $Q$ are monic cubics, we can write \[f(x) = \frac{(x-a)(x-b)(x-t)}{(x-c)(x-d)(x-t)}\] for some $t$. This keeps both numerator and denominator degree 3.

To prevent any additional sign changes, the extra factor $\frac{x-t}{x-t}$ must remain positive, so $t$ must either equal $c$ or $d$, or lie outside $[a,b]\cup(c,d)$.


Step 2. Counting Possible $(a,b,c,d,t)$

We must select four distinct values $a<b<c<d$ from $\{1,2,3,4,5\}$: \[\binom{5}{4} = 5\] possible sets: \[[1,2]\cup(3,4), \quad [1,2]\cup(3,5), \quad [1,2]\cup(4,5), \quad [1,3]\cup(4,5), \quad [2,3]\cup(4,5).\]

For each case, we count valid $t$ values.

  • Case 1:* $[1,2]\cup(3,4)$

$t = 3, 4, 5$ $\Rightarrow$ 3 functions.

  • Case 2:* $[1,2]\cup(3,5)$

$t = 3, 5$ $\Rightarrow$ 2 functions.

  • Case 3:* $[1,2]\cup(4,5)$

$t = 3, 4, 5$ $\Rightarrow$ 3 functions.

  • Case 4:* $[1,3]\cup(4,5)$

$t = 4, 5$ $\Rightarrow$ 2 functions.

  • Case 5:* $[2,3]\cup(4,5)$

$t = 1, 4, 5$ $\Rightarrow$ 3 functions.


Adding up all cases: \[3 + 2 + 3 + 2 + 3 = 13.\]


Therefore, there are $\boxed{13}$ possible functions $f(x)$, which corresponds to $\boxed{\textbf{(E)}}$.

- Victor Zhang

Video Solution 1 by OmegaLearn

https://youtu.be/SPbTyq3Dz_0