Art of Problem Solving

2025 AMC 12A Problems/Problem 25: Difference between revisions

Tiankaizhang (talk | contribs)
Solution 1 by Victor Zhang
Tiankaizhang (talk | contribs)
No edit summary
Line 1: Line 1:
Polynomials <imath>P(x)</imath> and <imath>Q(x)</imath> each have degree <imath>3</imath> and leading coefficient <imath>1</imath>, and their roots are all elements of <imath>\{1,2,3,4,5\}</imath>. The function <imath>f(x) = \tfrac{P(x)}{Q(x)}</imath> has the property that there exist real numbers <imath>a < b < c < d</imath> such that the set of all real numbers <imath>x</imath> such that <imath>f(x) \leq 0</imath> consists of the closed interval <imath>[a,b]</imath> together with the open interval <imath>(c,d)</imath>. How many functions <imath>f(x)</imath> are possible?
We begin by analyzing the sign chart. From the condition <imath>f(x) \le 0</imath> on <imath>[a,b] \cup (c,d)</imath> and <imath>f(x) > 0</imath> elsewhere, we deduce the following:


==Solution 1 by Victor Zhang ==
- <imath>a</imath> and <imath>b</imath> are zeros of <imath>f</imath>, since we transition from <imath>f>0</imath> to <imath>f\le0</imath> at <imath>a</imath>, and from <imath>f\le0</imath> to <imath>f>0</imath> at <imath>b</imath>.
\documentclass[12pt]{article}
- <imath>c</imath> and <imath>d</imath> are poles or holes of <imath>f</imath>, since on <imath>(c,d)</imath> we have <imath>f\le0</imath>, while immediately outside that interval <imath>f>0</imath>.
\usepackage{amsmath, amssymb, amsthm}
\usepackage{enumitem}
\begin{document}
\section*{Solution}


\subsection*{Step 1: Sign chart analysis}
Thus, the sign pattern of <imath>f(x)</imath> is
From the structure <imath>f(x) \le 0</imath> on <imath>[a,b] \cup (c,d)</imath> and <imath>f(x) &gt; 0</imath> elsewhere,
<cmath>
we deduce:
\begin{itemize}
\item <imath>a</imath> and <imath>b</imath> are zeros of <imath>f</imath> (since we transition from <imath>f &gt; 0</imath> to <imath>f \le
0</imath> at <imath>a</imath> and from <imath>f \le 0</imath> to <imath>f &gt; 0</imath> at <imath>b</imath>).
\item <imath>c</imath> and <imath>d</imath> are poles or holes of <imath>f</imath> (since on <imath>(c,d)</imath> we have <imath>f \le
0</imath>, at <imath>c^+</imath> and <imath>d^-</imath> the sign is negative, and immediately outside the
interval <imath>f &gt; 0</imath>).
\end{itemize}
Thus the sign pattern is:\\
<imath>\textstyle
\begin{array}{cccccccccc}
\begin{array}{cccccccccc}
&amp; (-\infty, a) &amp; a &amp; (a,b) &amp; b &amp; (b,c) &amp; c &amp; (c,d) &amp; d &amp; (d,\infty) \\
& (-\infty, a) & a & (a,b) & b & (b,c) & c & (c,d) & d & (d,\infty) \\
f(x) &amp; + &amp; 0 &amp; - &amp; 0 &amp; + &amp; \text{pole} &amp; - &amp; \text{pole} &amp; +
f(x) & + & 0 & - & 0 & + & \text{pole} & - & \text{pole} & +
\end{array}
\end{array}
</imath>
</cmath>
\section*{Step 2: Structure of \( f(x) \)}
 
According to the given conditions, \( f(x) \) can be expressed as:
---
\[
 
**Step 2. Structure of <imath>f(x)</imath>**
 
According to the given conditions, we can express
<cmath>
f(x) = \frac{(x-p_1)(x-p_2)(x-p_3)}{(x-q_1)(x-q_2)(x-q_3)}.
f(x) = \frac{(x-p_1)(x-p_2)(x-p_3)}{(x-q_1)(x-q_2)(x-q_3)}.
\]
</cmath>
Combining the sign analysis from Step 1, we can rewrite this expression as:
Combining this with the sign analysis, we can write
\[
<cmath>
f(x) = \frac{(x-a)(x-b)(x-p_3)}{(x-c)(x-d)(x-q_3)}.
f(x) = \frac{(x-a)(x-b)(x-p_3)}{(x-c)(x-d)(x-q_3)}.
\]
</cmath>
Furthermore, we can break down the expression into two parts:
We can separate this into two factors:
\[
<cmath>
f(x) = \frac{(x-a)(x-b)}{(x-c)(x-d)} \cdot \frac{x-p_3}{x-q_3}.
f(x) = \frac{(x-a)(x-b)}{(x-c)(x-d)} \cdot \frac{x-p_3}{x-q_3}.
\]
</cmath>
Defining \( f(x) = f_1(x) \cdot f_2(x) \), we have:
Define
\[
<cmath>
f_1(x) = \frac{(x-a)(x-b)}{(x-c)(x-d)}, \quad f_2(x) = \frac{x-p_3}{x-q_3}.
f_1(x) = \frac{(x-a)(x-b)}{(x-c)(x-d)}, \qquad f_2(x) = \frac{x-p_3}{x-q_3}.
\]
</cmath>


\section*{Step 3: Analysis of \( p_3 \) and \( q_3 \)}
---
\begin{itemize}
\item By analyzing the sign changes of \( f_1(x) \), we find that it completely
satisfies the sign chart for \( f(x) \). We can therefore conclude that \( f_2(x) \)
must be positive on every interval; otherwise, it would introduce an extra sign
change. This forces the condition \( p_3 = q_3 \), because if \( p_3 \neq q_3 \),
the factor \( f_2(x) \) would be negative on the interval between \( p_3 \) and \(
q_3 \). Let \( p_3 = q_3 = t \).
\item Furthermore, \( t \) cannot lie within \( [a,b] \cup (c,d) \). If it did, it
would contradict the given condition that the set \( \{x : f(x) \le 0\} \) consists of
the closed interval \( [a, b] \) and the open interval \( (c, d) \).
\item Additionally, \( t \) cannot be equal to \( a \) or \( b \). If it were, that
point would be a hole (a point of discontinuity) in the graph of \( f(x) \), which
contradicts the fact that \( [a, b] \) is a \textbf{closed} interval where \( f(x) \le 0
\). On a closed interval, the function must be defined at the endpoints.
\end{itemize}
In conclusion, \( t \) can only be equal to \( c \) or \( d \), or lie in an interval
outside of \( [a,b] \cup (c,d) \).
\section*{Step 4: The Possible Values of <imath>a</imath>, <imath>b</imath>, <imath>c</imath>, <imath>d</imath>, and <imath>t</imath>}
\begin{itemize}
\item Given <imath>a &lt; b &lt; c &lt; d</imath> and the condition that <imath>\{x: f(x) \leq 0\} = [a,b]
\cup (c,d)</imath>, the number of ways to choose <imath>a,b,c,d</imath> from <imath>\{1,2,3,4,5\}</imath> is:
\[
\binom{5}{4} = 5
\]
The five cases are:
<imath>[1,2]\cup (3,4)</imath>; <imath>[1,2]\cup (3,5)</imath>; <imath>[1,2]\cup (4,5)</imath>; <imath>[1,3]\cup (4,5)</imath>;
<imath>[2,3]\cup (4,5)</imath>
\item \textbf{Case 1:} <imath>[1,2]\cup (3,4)</imath>, <imath>t</imath> can be 3, 4, or 5.\\
This gives us 3 combinations:
\[
f(x) = \frac{(x-1)(x-2)(x-3)}{(x-3)(x-4)(x-3)}
\]
\[
f(x) = \frac{(x-1)(x-2)(x-4)}{(x-3)(x-4)(x-4)}
\]
\[
f(x) = \frac{(x-1)(x-2)(x-5)}{(x-3)(x-4)(x-5)}
\]
\item \textbf{Case 2:} <imath>[1,2]\cup (3,5)</imath>, <imath>t</imath> can be 3 or 5.\\


This gives us 2 combinations:
**Step 3. Determining <imath>p_3</imath> and <imath>q_3</imath>**
\[
f(x) = \frac{(x-1)(x-2)(x-3)}{(x-3)(x-5)(x-3)}
\]
\[
f(x) = \frac{(x-1)(x-2)(x-5)}{(x-3)(x-5)(x-5)}
\]
\item \textbf{Case 3:} <imath>[1,2]\cup (4,5)</imath>, <imath>t</imath> can be 3, 4, or 5.\\
This gives us 3 combinations:
\[
f(x) = \frac{(x-1)(x-2)(x-3)}{(x-4)(x-5)(x-3)}
\]
\[
f(x) = \frac{(x-1)(x-2)(x-4)}{(x-4)(x-5)(x-4)}
\]
\[
f(x) = \frac{(x-1)(x-2)(x-5)}{(x-4)(x-5)(x-5)}
\]
\item \textbf{Case 4:} <imath>[1,3]\cup (4,5)</imath>, <imath>t</imath> can be 4 or 5.\\
This gives us 2 combinations:
\[
f(x) = \frac{(x-1)(x-3)(x-4)}{(x-4)(x-5)(x-4)}
\]
\[
f(x) = \frac{(x-1)(x-3)(x-5)}{(x-4)(x-5)(x-5)}
\]
\item \textbf{Case 5:} <imath>[2,3]\cup (4,5)</imath>, <imath>t</imath> can be 1, 4, or 5.\\
This gives us 3 combinations:
\[
f(x) = \frac{(x-2)(x-3)(x-1)}{(x-4)(x-5)(x-1)}
\]
\[
f(x) = \frac{(x-2)(x-3)(x-4)}{(x-4)(x-5)(x-4)}
\]
\[
f(x) = \frac{(x-2)(x-3)(x-5)}{(x-4)(x-5)(x-5)}
\]
\end{itemize}
\section*{Step 5: Final Answer}
Summing up all possible cases from Step 4 gives us <imath>3 + 2 + 3 + 2 + 3 = 13</imath>
possible functions <imath>f(x)</imath>.
Thus the answer is <imath>\boxed{E}</imath>.
\end{document}


\section*{Step 4: The possible of a,b,c,d, and t }
By analyzing the sign changes of <imath>f_1(x)</imath>, we see that it already matches the required sign pattern for <imath>f(x)</imath>. Therefore, <imath>f_2(x)</imath> must remain positive on every interval; otherwise, it would introduce extra sign changes.
\begin{itemize}
\item According to given <imath>a &lt; b &lt; c &lt; d </imath> and \( [a,b] \cup (c,d) \), the ways
of choose a,b,c,d from {1,2,3,4,5}:
<cmath> \binom{5}{4}=5</cmath>
List 5 cases as:\\$[1,2]\cup (3,4); [1,2]\cup (3,5); [1,2]\cup (4,5); [1,3]\cup
(4,5); [2,3]\cup (4,5)<imath>


\item Case 1: </imath>[1,2]\cup (3,4)<imath>, t can be 3,4, or 5.\\
This means <imath>p_3 = q_3</imath>, since if <imath>p_3 \ne q_3</imath>, the factor <imath>\frac{x-p_3}{x-q_3}</imath> would change sign between <imath>p_3</imath> and <imath>q_3</imath>. 
Give us 3 combnation:
Let <imath>p_3 = q_3 = t</imath>.
\[
 
f(x) = \frac{(x-1)(x-2)(x-3)}{(x-3)(x-4)(x-3)}
Furthermore:
\]
- <imath>t</imath> cannot lie within <imath>[a,b] \cup (c,d)</imath>, since that would alter the set <imath>\{x : f(x) \le 0\}</imath>.
\[
- <imath>t</imath> cannot be equal to <imath>a</imath> or <imath>b</imath>, since that would make those endpoints holes (discontinuities), contradicting that <imath>[a,b]</imath> is a *closed* interval.
f(x) = \frac{(x-1)(x-2)(x-4)}{(x-3)(x-4)(x-4
 
)}
Hence, <imath>t</imath> must either be equal to <imath>c</imath> or <imath>d</imath>, or lie outside <imath>[a,b] \cup (c,d)</imath>.
\]
 
\[
---
 
**Step 4. Possible values of <imath>a,b,c,d,t</imath>**
 
Given <imath>a<b<c<d</imath> and <imath>\{x : f(x) \le 0\} = [a,b] \cup (c,d)</imath>, we choose four distinct numbers from <imath>\{1,2,3,4,5\}</imath> for <imath>a,b,c,d</imath>:
<cmath>
\binom{5}{4} = 5.
</cmath>
The five possible cases are:
<cmath>
[1,2]\cup(3,4), \quad [1,2]\cup(3,5), \quad [1,2]\cup(4,5), \quad [1,3]\cup(4,5), \quad [2,3]\cup(4,5).
</cmath>
 
---
 
**Case 1:** <imath>[1,2]\cup(3,4)</imath> 
<imath>t</imath> can be <imath>3</imath>, <imath>4</imath>, or <imath>5</imath>, giving 3 functions:
<cmath>
f(x) = \frac{(x-1)(x-2)(x-3)}{(x-3)(x-4)(x-3)}, \quad
f(x) = \frac{(x-1)(x-2)(x-4)}{(x-3)(x-4)(x-4)}, \quad
f(x) = \frac{(x-1)(x-2)(x-5)}{(x-3)(x-4)(x-5)}.
f(x) = \frac{(x-1)(x-2)(x-5)}{(x-3)(x-4)(x-5)}.
\]
</cmath>
\item Case 2: </imath>[1,2]\cup (3,5)<imath>, t can be 3, or 5.\\
 
Give us 2 combnation:
**Case 2:** <imath>[1,2]\cup(3,5)</imath> 
\[
<imath>t</imath> can be <imath>3</imath> or <imath>5</imath>, giving 2 functions:
f(x) = \frac{(x-1)(x-2)(x-3)}{(x-3)(x-5)(x-3)}
<cmath>
\]
f(x) = \frac{(x-1)(x-2)(x-3)}{(x-3)(x-5)(x-3)}, \quad
\[
f(x) = \frac{(x-1)(x-2)(x-5)}{(x-3)(x-5)(x-5)}.
f(x) = \frac{(x-1)(x-2)(x-5)}{(x-3)(x-4)(x-5
</cmath>
)}
 
\]
**Case 3:** <imath>[1,2]\cup(4,5)</imath> 
\item Case 3: </imath>[1,2]\cup (4,5)<imath>, t can be 3,4, or 5.\\
<imath>t</imath> can be <imath>3</imath>, <imath>4</imath>, or <imath>5</imath>, giving 3 functions:
Give us 3 combnation:
<cmath>
\[
f(x) = \frac{(x-1)(x-2)(x-3)}{(x-4)(x-5)(x-3)}, \quad
f(x) = \frac{(x-1)(x-2)(x-3)}{(x-4)(x-5)(x-3)}
f(x) = \frac{(x-1)(x-2)(x-4)}{(x-4)(x-5)(x-4)}, \quad
\]
\[
f(x) = \frac{(x-1)(x-2)(x-4)}{(x-4)(x-5)(x-4
)}
\]
\[
f(x) = \frac{(x-1)(x-2)(x-5)}{(x-4)(x-5)(x-5)}.
f(x) = \frac{(x-1)(x-2)(x-5)}{(x-4)(x-5)(x-5)}.
\]
</cmath>
\item Case 4: </imath>[1,3]\cup (4,5)<imath>, t can be 4, or 5.\\
 
Give us 2 combnation:
**Case 4:** <imath>[1,3]\cup(4,5)</imath> 
\[
<imath>t</imath> can be <imath>4</imath> or <imath>5</imath>, giving 2 functions:
f(x) = \frac{(x-1)(x-3)(x-4)}{(x-4)(x-5)(x-4)}
<cmath>
f(x) = \frac{(x-1)(x-3)(x-4)}{(x-4)(x-5)(x-4)}, \quad
f(x) = \frac{(x-1)(x-3)(x-5)}{(x-4)(x-5)(x-5)}.
</cmath>


\]
**Case 5:** <imath>[2,3]\cup(4,5)</imath> 
\[
<imath>t</imath> can be <imath>1</imath>, <imath>4</imath>, or <imath>5</imath>, giving 3 functions:
f(x) = \frac{(x-1)(x-3)(x-5)}{(x-4)(x-5)(x-5
<cmath>
)}
f(x) = \frac{(x-2)(x-3)(x-1)}{(x-4)(x-5)(x-1)}, \quad
\]
f(x) = \frac{(x-2)(x-3)(x-4)}{(x-4)(x-5)(x-4)}, \quad
\item Case 5: </imath>[2,3]\cup (4,5)<imath>, t can be 1,4, or 5.\\
f(x) = \frac{(x-2)(x-3)(x-5)}{(x-4)(x-5)(x-5)}.
Give us 3 combnation:
</cmath>
\[
f(x) = \frac{(x-2)(x-3)(x-1)}{(x-4)(x-5)(x-1)}
\]
\[
f(x) = \frac{(x-2)(x-3)(x-4)}{(x-4)(x-5)(x-4)}
\] \[
f(x) = \frac{(x-2)(x-3)(x-5)}{(x-4)(x-5)(x-5)}
\]


\section*{Step 5: final answer }
---
\Sum up all possible cases of step 4 give us 13 possible functions f(x).


Thus the answer is </imath>\boxed{E}$.
**Step 5. Final Answer**
\end{document}


==Video Solution 1 by OmegaLearn==
Summing all possible cases:
https://youtu.be/SPbTyq3Dz_0
<cmath>
3 + 2 + 3 + 2 + 3 = 13.
</cmath>
Thus, there are <imath>\boxed{13}</imath> possible functions <imath>f(x)</imath>, corresponding to choice <imath>\boxed{E}</imath>.

Revision as of 02:24, 7 November 2025

We begin by analyzing the sign chart. From the condition $f(x) \le 0$ on $[a,b] \cup (c,d)$ and $f(x) > 0$ elsewhere, we deduce the following:

- $a$ and $b$ are zeros of $f$, since we transition from $f>0$ to $f\le0$ at $a$, and from $f\le0$ to $f>0$ at $b$. - $c$ and $d$ are poles or holes of $f$, since on $(c,d)$ we have $f\le0$, while immediately outside that interval $f>0$.

Thus, the sign pattern of $f(x)$ is \[\begin{array}{cccccccccc}  & (-\infty, a) & a & (a,b) & b & (b,c) & c & (c,d) & d & (d,\infty) \\ f(x) & + & 0 & - & 0 & + & \text{pole} & - & \text{pole} & + \end{array}\]

---

    • Step 2. Structure of $f(x)$**

According to the given conditions, we can express \[f(x) = \frac{(x-p_1)(x-p_2)(x-p_3)}{(x-q_1)(x-q_2)(x-q_3)}.\] Combining this with the sign analysis, we can write \[f(x) = \frac{(x-a)(x-b)(x-p_3)}{(x-c)(x-d)(x-q_3)}.\] We can separate this into two factors: \[f(x) = \frac{(x-a)(x-b)}{(x-c)(x-d)} \cdot \frac{x-p_3}{x-q_3}.\] Define \[f_1(x) = \frac{(x-a)(x-b)}{(x-c)(x-d)}, \qquad f_2(x) = \frac{x-p_3}{x-q_3}.\]

---

    • Step 3. Determining $p_3$ and $q_3$**

By analyzing the sign changes of $f_1(x)$, we see that it already matches the required sign pattern for $f(x)$. Therefore, $f_2(x)$ must remain positive on every interval; otherwise, it would introduce extra sign changes.

This means $p_3 = q_3$, since if $p_3 \ne q_3$, the factor $\frac{x-p_3}{x-q_3}$ would change sign between $p_3$ and $q_3$. Let $p_3 = q_3 = t$.

Furthermore: - $t$ cannot lie within $[a,b] \cup (c,d)$, since that would alter the set $\{x : f(x) \le 0\}$. - $t$ cannot be equal to $a$ or $b$, since that would make those endpoints holes (discontinuities), contradicting that $[a,b]$ is a *closed* interval.

Hence, $t$ must either be equal to $c$ or $d$, or lie outside $[a,b] \cup (c,d)$.

---

    • Step 4. Possible values of $a,b,c,d,t$**

Given $a<b<c<d$ and $\{x : f(x) \le 0\} = [a,b] \cup (c,d)$, we choose four distinct numbers from $\{1,2,3,4,5\}$ for $a,b,c,d$: \[\binom{5}{4} = 5.\] The five possible cases are: \[[1,2]\cup(3,4), \quad [1,2]\cup(3,5), \quad [1,2]\cup(4,5), \quad [1,3]\cup(4,5), \quad [2,3]\cup(4,5).\]

---

    • Case 1:** $[1,2]\cup(3,4)$

$t$ can be $3$, $4$, or $5$, giving 3 functions: \[f(x) = \frac{(x-1)(x-2)(x-3)}{(x-3)(x-4)(x-3)}, \quad f(x) = \frac{(x-1)(x-2)(x-4)}{(x-3)(x-4)(x-4)}, \quad f(x) = \frac{(x-1)(x-2)(x-5)}{(x-3)(x-4)(x-5)}.\]

    • Case 2:** $[1,2]\cup(3,5)$

$t$ can be $3$ or $5$, giving 2 functions: \[f(x) = \frac{(x-1)(x-2)(x-3)}{(x-3)(x-5)(x-3)}, \quad f(x) = \frac{(x-1)(x-2)(x-5)}{(x-3)(x-5)(x-5)}.\]

    • Case 3:** $[1,2]\cup(4,5)$

$t$ can be $3$, $4$, or $5$, giving 3 functions: \[f(x) = \frac{(x-1)(x-2)(x-3)}{(x-4)(x-5)(x-3)}, \quad f(x) = \frac{(x-1)(x-2)(x-4)}{(x-4)(x-5)(x-4)}, \quad f(x) = \frac{(x-1)(x-2)(x-5)}{(x-4)(x-5)(x-5)}.\]

    • Case 4:** $[1,3]\cup(4,5)$

$t$ can be $4$ or $5$, giving 2 functions: \[f(x) = \frac{(x-1)(x-3)(x-4)}{(x-4)(x-5)(x-4)}, \quad f(x) = \frac{(x-1)(x-3)(x-5)}{(x-4)(x-5)(x-5)}.\]

    • Case 5:** $[2,3]\cup(4,5)$

$t$ can be $1$, $4$, or $5$, giving 3 functions: \[f(x) = \frac{(x-2)(x-3)(x-1)}{(x-4)(x-5)(x-1)}, \quad f(x) = \frac{(x-2)(x-3)(x-4)}{(x-4)(x-5)(x-4)}, \quad f(x) = \frac{(x-2)(x-3)(x-5)}{(x-4)(x-5)(x-5)}.\]

---

    • Step 5. Final Answer**

Summing all possible cases: \[3 + 2 + 3 + 2 + 3 = 13.\] Thus, there are $\boxed{13}$ possible functions $f(x)$, corresponding to choice $\boxed{E}$.