2000 AIME I Problems/Problem 14: Difference between revisions
mNo edit summary |
m minor wik |
||
| Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
In triangle <math>ABC,</math> it is given that angles <math>B</math> and <math>C</math> are congruent. Points <math>P</math> and <math>Q</math> lie on <math>\overline{AC}</math> and <math>\overline{AB},</math> respectively, so that <math>AP = PQ = QB = BC.</math> Angle <math>ACB</math> is <math>r</math> times as large as angle <math>APQ,</math> where <math>r</math> is a positive real number. Find the greatest integer that does not exceed <math>1000r</math>. | In triangle <math>ABC,</math> it is given that angles <math>B</math> and <math>C</math> are [[congruent (geometry)|congruent]]. Points <math>P</math> and <math>Q</math> lie on <math>\overline{AC}</math> and <math>\overline{AB},</math> respectively, so that <math>AP = PQ = QB = BC.</math> Angle <math>ACB</math> is <math>r</math> times as large as angle <math>APQ,</math> where <math>r</math> is a positive real number. Find the greatest integer that does not exceed <math>1000r</math>. | ||
== Solution == | == Solution == | ||
<center><asy>defaultpen(fontsize(8)); size(200); pair A=20*dir(80)+20*dir(60)+20*dir(100), B=(0,0), C=20*dir(0), P=20*dir(80)+20*dir(60), Q=20*dir(80), R=20*dir(60), S; S=intersectionpoint(Q--C,P--B); draw(A--B--C--A);draw(B--P--Q--C--R--Q);draw(A--R--B);draw(P--R--S); label("A",A,(0,1));label("B",B,(-1,-1));label("C",C,(1,-1));label("P",P,(1,1)); label("Q",Q,(-1,1));label("R",R,(1,0));label("S",S,(-1,0)); | <center><asy>defaultpen(fontsize(8)); size(200); pair A=20*dir(80)+20*dir(60)+20*dir(100), B=(0,0), C=20*dir(0), P=20*dir(80)+20*dir(60), Q=20*dir(80), R=20*dir(60), S; S=intersectionpoint(Q--C,P--B); draw(A--B--C--A);draw(B--P--Q--C--R--Q);draw(A--R--B);draw(P--R--S); label("\(A\)",A,(0,1));label("\(B\)",B,(-1,-1));label("\(C\)",C,(1,-1));label("\(P\)",P,(1,1)); label("\(Q\)",Q,(-1,1));label("\(R\)",R,(1,0));label("\(S\)",S,(-1,0)); | ||
</asy></center>Let point <math>R</math> be in <math>\triangle ABC</math> such that <math>QB = BR = RP</math>, thus <math>PQBR</math> is a rhombus and <math>APRB</math> is an isosceles trapezoid. | </asy></center>Let point <math>R</math> be in <math>\triangle ABC</math> such that <math>QB = BR = RP</math>, thus <math>PQBR</math> is a [[rhombus]] and <math>APRB</math> is an [[isosceles trapezoid]]. | ||
Let <math>\angle BAC = \angle QBR = \angle QPR = 2x</math> and <math>\angle ABC = \angle ACB = y</math>, which means <math>x + y = 90</math>. | Let <math>\angle BAC = \angle QBR = \angle QPR = 2x</math> and <math>\angle ABC = \angle ACB = y</math>, which means <math>x + y = 90</math>. | ||
<math>\triangle QBC</math> is isosceles with <math>QB = BC</math>, so <math>\angle BCQ = 90 - \frac {y}{2}</math>. | <math>\triangle QBC</math> is isosceles with <math>QB = BC</math>, so <math>\angle BCQ = 90 - \frac {y}{2}</math>. | ||
Let <math>S</math> be the intersection of <math>QC</math>and <math>BR</math>. Since <math>\angle BCQ = \angle BQC = \angle BRS</math>, <math>BCRS</math> is cyclic, which means <math>\angle RBS = \angle RCS = x</math>. | Let <math>S</math> be the intersection of <math>QC</math> and <math>BR</math>. Since <math>\angle BCQ = \angle BQC = \angle BRS</math>, <math>BCRS</math> is [[cyclic quadrilateral|cyclic]], which means <math>\angle RBS = \angle RCS = x</math>. | ||
Since <math>APRB</math> is an isosceles trapezoid, <math>BP = AR</math>, but since <math>AR</math> bisects <math>\angle BAC</math>, <math>\angle ABR = \angle ACR = 2x</math>. | Since <math>APRB</math> is an isosceles trapezoid, <math>BP = AR</math>, but since <math>AR</math> bisects <math>\angle BAC</math>, <math>\angle ABR = \angle ACR = 2x</math>. | ||
Therefore we have that <math>\angle ACB = \angle ACR + \angle RCS + \angle QCB = 2x + x + 90 - \frac {y}{2} = y</math>. | Therefore we have that <math>\angle ACB = \angle ACR + \angle RCS + \angle QCB = 2x + x + 90 - \frac {y}{2} = y</math>. | ||
We solve the simultaneous equations <math>x + y = 90</math> and <math>2x + x + 90 - \frac {y}{2} = y</math> to get <math>x = 10</math> and <math>y = 80</math>. | We solve the simultaneous equations <math>x + y = 90</math> and <math>2x + x + 90 - \frac {y}{2} = y</math> to get <math>x = 10</math> and <math>y = 80</math>. | ||
| Line 15: | Line 16: | ||
== See also == | == See also == | ||
{{AIME box|year=2000|n=I|num-b=13|num-a=15}} | {{AIME box|year=2000|n=I|num-b=13|num-a=15|t=721509}} | ||
[[Category:Intermediate Geometry Problems]] | |||
Revision as of 13:47, 16 June 2008
Problem
In triangle
it is given that angles
and
are congruent. Points
and
lie on
and
respectively, so that
Angle
is
times as large as angle
where
is a positive real number. Find the greatest integer that does not exceed
.
Solution
![[asy]defaultpen(fontsize(8)); size(200); pair A=20*dir(80)+20*dir(60)+20*dir(100), B=(0,0), C=20*dir(0), P=20*dir(80)+20*dir(60), Q=20*dir(80), R=20*dir(60), S; S=intersectionpoint(Q--C,P--B); draw(A--B--C--A);draw(B--P--Q--C--R--Q);draw(A--R--B);draw(P--R--S); label("\(A\)",A,(0,1));label("\(B\)",B,(-1,-1));label("\(C\)",C,(1,-1));label("\(P\)",P,(1,1)); label("\(Q\)",Q,(-1,1));label("\(R\)",R,(1,0));label("\(S\)",S,(-1,0)); [/asy]](http://latex.artofproblemsolving.com/1/6/6/166838a1bc564730cc23500919254edab0c132e2.png)
Let point
be in
such that
, thus
is a rhombus and
is an isosceles trapezoid.
Let
and
, which means
.
is isosceles with
, so
.
Let
be the intersection of
and
. Since
,
is cyclic, which means
.
Since
is an isosceles trapezoid,
, but since
bisects
,
.
Therefore we have that
.
We solve the simultaneous equations
and
to get
and
.
,
, so
.
See also
| 2000 AIME I (Problems • Answer Key • Resources) | ||
| Preceded by Problem 13 |
Followed by Problem 15 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||