2025 AMC 12A Problems/Problem 15: Difference between revisions
Jonathanmo (talk | contribs) Created page with "==Problem 21== A set of numbers is called <imath>sum</imath>-<imath>free</imath> if whenever <imath>x</imath> and <imath>y</imath> are (not necessarily distinct) elements of the set, <imath>x+y</imath> is not an element of the set. For example, <imath>\{1,4,6\}</imath> and the empty set are sum-free, but <imath>\{2,4,5\}</imath> is not. What is the greatest possible number of elements in a sum-free subset of <imath>\{1,2,3,...,20\}</imath>? <imath>\textbf{(A) } 8 \qquad..." |
|||
| Line 1: | Line 1: | ||
==Problem | ==Problem 15== | ||
A set of numbers is called <imath>sum</imath>-<imath>free</imath> if whenever <imath>x</imath> and <imath>y</imath> are (not necessarily distinct) elements of the set, <imath>x+y</imath> is not an element of the set. For example, <imath>\{1,4,6\}</imath> and the empty set are sum-free, but <imath>\{2,4,5\}</imath> is not. What is the greatest possible number of elements in a sum-free subset of <imath>\{1,2,3,...,20\}</imath>? | A set of numbers is called <imath>sum</imath>-<imath>free</imath> if whenever <imath>x</imath> and <imath>y</imath> are (not necessarily distinct) elements of the set, <imath>x+y</imath> is not an element of the set. For example, <imath>\{1,4,6\}</imath> and the empty set are sum-free, but <imath>\{2,4,5\}</imath> is not. What is the greatest possible number of elements in a sum-free subset of <imath>\{1,2,3,...,20\}</imath>? | ||
| Line 5: | Line 5: | ||
[[2025 AMC 10A Problems/Problem 21|Solution]] | [[2025 AMC 10A Problems/Problem 21|Solution]] | ||
==Solution== | ==Solution== | ||
Let <imath>S = \{1, 2, 3, ..., 20\}</imath>. We are looking for the largest possible sum-free subset <imath>A \subseteq S</imath>. | Let <imath>S = \{1, 2, 3, ..., 20\}</imath>. We are looking for the largest possible sum-free subset <imath>A \subseteq S</imath>. | ||
Revision as of 16:40, 6 November 2025
Problem 15
A set of numbers is called
-
if whenever
and
are (not necessarily distinct) elements of the set,
is not an element of the set. For example,
and the empty set are sum-free, but
is not. What is the greatest possible number of elements in a sum-free subset of
?
Solution
Let
. We are looking for the largest possible sum-free subset
.
First, we show that a sum-free set of size 10 is possible.
Consider the set
. The smallest possible sum of two elements (not necessarily distinct) from this set is
. Since
, no sum of two elements from
can be in
. The size of
is
.
Thus, a sum-free set of size 10 exists.
Next, we prove that no sum-free set
can have 11 or more elements.
Let
be the largest element in
.
Since
is sum-free and
, for any
, we must have
(unless
, in which case
). This is because if both
and
were in
, their sum
would be in
, which is a contradiction.
We can partition the set
into pairs that sum to
, plus any leftover elements.
Case 1:
is even. Let
.
The numbers in
can be grouped as:
along with the numbers
and
.
\item
contains
.
\item
cannot contain
, because
, which is in
.
\item
can contain at most one number from each of the
pairs.
The maximum number of elements
can contain from
is
.
Since
, the maximum size of
is
.
Case 2:
is odd. Let
.
The numbers in
can be grouped as:
along with
.
\item
contains
.
\item
can contain at most one number from each of the
pairs.
The maximum number of elements
can contain from
is
.
Since
, we have
.
The largest possible odd
is 19. If
,
.
So the maximum size of
is
.
In all cases, a sum-free subset of
can have at most 10 elements.
Since we found a set with 10 elements, the greatest possible number of elements is 10.