2025 AMC 10A Problems/Problem 23: Difference between revisions
Jonathanmo (talk | contribs) |
mNo edit summary |
||
| Line 3: | Line 3: | ||
<imath>\textbf{(A)}~18\qquad\textbf{(B)}~19\qquad\textbf{(C)}~20\qquad\textbf{(D)}~21\qquad\textbf{(E)}~22</imath> | <imath>\textbf{(A)}~18\qquad\textbf{(B)}~19\qquad\textbf{(C)}~20\qquad\textbf{(D)}~21\qquad\textbf{(E)}~22</imath> | ||
==Solution 1== | ==Solution 1== | ||
Let <imath>CH</imath> be the altitude from vertex <imath>C</imath> to the side <imath>\overline{AB}</imath>, so <imath>H</imath> is a point on <imath>AB</imath> and <imath>\angle CHB = 90^\circ</imath>. | Let <imath>CH</imath> be the altitude from vertex <imath>C</imath> to the side <imath>\overline{AB}</imath>, so <imath>H</imath> is a point on <imath>AB</imath> and <imath>\angle CHB = 90^\circ</imath>. | ||
| Line 77: | Line 78: | ||
~Jonathanmo | ~Jonathanmo | ||
==Solution | ==Solution 2== | ||
Let <imath>D</imath> be the foot of the altitude from <imath>C</imath> to <imath>AB</imath>. We wish to find <imath>BD</imath> and <imath>DP</imath>. | Let <imath>D</imath> be the foot of the altitude from <imath>C</imath> to <imath>AB</imath>. We wish to find <imath>BD</imath> and <imath>DP</imath>. | ||
Revision as of 14:53, 6 November 2025
Problem 23
Triangle
has side lengths
,
, and
. The bisector
and the altitude to side
intersect at point
. What is
?
Solution 1
Let
be the altitude from vertex
to the side
, so
is a point on
and
.
Let
be the angle bisector of
, where
is on
.
Point
is the intersection of the altitude
and the angle bisector
.
We want to find the length of
.
Consider the triangle
. Since
lies on the altitude
, the angle
is the same as
, which is
. Therefore,
is a right-angled triangle.
In the right
, the angle
is the angle formed by the angle bisector
and the side
. By definition of the angle bisector,
.
Using trigonometry in the right
, we have:
Rearranging this gives:
To solve the problem, we need to find the lengths of
and the value of
.
\textbf{1. Find the length of BH}
is the projection of side
onto
. In the right-angled triangle
,
.
We can find
using the Law of Cosines on
:
Now, we can find
:
\textbf{2. Find the value of
}
We use the half-angle identity for cosine:
.
We know
:
(We take the positive root because
must be an acute angle).
\textbf{3. Calculate BP}
Now we substitute our values for
and
into the equation for
:
The length of
is 21. This corresponds to answer choice
.
~Jonathanmo
Solution 2
Let
be the foot of the altitude from
to
. We wish to find
and
.
First, notice that
and
by the Pythagorean Theorem. Subtracting the second equation from the first, we get
Plugging in values, we see that
. So,
,
, and
.
To find
, we use the Angle Bisector Theorem. The ratio between
and
is
, so
. Finally, we use the Pythagorean Theorem to get
so
.
~ChickensEatGrass