2001 AIME I Problems/Problem 3: Difference between revisions
No edit summary |
tex cleanup |
||
| Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
Find the sum of the | Find the sum of the [[root]]s, real and non-real, of the equation <math>x^{2001}+\left(\frac 12-x\right)^{2001}=0</math>, given that there are no multiple roots. | ||
== Solution == | == Solution == | ||
From [[Vieta's formulas]], | From [[Vieta's formulas]], in a [[polynomial]] of the form <math>a_nx^n + a_{n-1}x^{n-1} + \cdots + a_0 = 0</math>, then the sum of the roots is <math>\frac{-a_{n-1}}{a_n}</math>. | ||
From the [[Binomial Theorem]], the first term of <math>left(\frac 12-x\right)^{2001}</math> is <math>-x^{2001}</math>, but <math>x^{2001}+-x^{2001}=0</math>, so the | From the [[Binomial Theorem]], the first term of <math>\left(\frac 12-x\right)^{2001}</math> is <math>-x^{2001}</math>, but <math>x^{2001}+-x^{2001}=0</math>, so the term with the largest degree is <math>x^{2000}</math>. So we need the coefficient of that term, as well as the coefficient of <math>x^{1999}</math>. | ||
< | <cmath>\begin{align*}\binom{2001}{1} \cdot (-x)^{2000} \cdot \left(\frac{1}{2}\right)^1&=\frac{2001x^{2000}}{2}\\ | ||
\binom{2001}{2} \cdot (-x)^{1999} \cdot \left(\frac{1}{2}\right)^2 &=\frac{-x^{1999}*2001*2000}{8}=-2001 \cdot 250x^{1999} | |||
\end{align*}</cmath> | |||
<math>- | Applying Vieta's formulas, we find that the sum of the roots is <math>-\frac{-2001 \cdot 250}{\frac{2001}{2}}=250 \cdot 2=\boxed{500}</math>. | ||
== See also == | == See also == | ||
{{AIME box|year=2001|n=I|num-b=2|num-a=4}} | {{AIME box|year=2001|n=I|num-b=2|num-a=4}} | ||
[[Category:Intermediate Algebra Problems]] | |||
Revision as of 16:34, 11 June 2008
Problem
Find the sum of the roots, real and non-real, of the equation
, given that there are no multiple roots.
Solution
From Vieta's formulas, in a polynomial of the form
, then the sum of the roots is
.
From the Binomial Theorem, the first term of
is
, but
, so the term with the largest degree is
. So we need the coefficient of that term, as well as the coefficient of
.
Applying Vieta's formulas, we find that the sum of the roots is
.
See also
| 2001 AIME I (Problems • Answer Key • Resources) | ||
| Preceded by Problem 2 |
Followed by Problem 4 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||