2005 Canadian MO Problems/Problem 4: Difference between revisions
incomplete |
A better incomplete solution. |
||
| Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
Let <math>ABC</math> be a triangle with circumradius <math>R</math>, perimeter <math>P</math> and area <math>K</math>. Determine the maximum value of <math>KP/R^3</math>. | Let <math>ABC</math> be a triangle with circumradius <math>R</math>, perimeter <math>P</math> and area <math>K</math>. Determine the maximum value of <math>KP/R^3</math>. | ||
==Solution== | ==Solution== | ||
Let the sides of triangle <math>ABC</math> be <math>a</math>, <math>b</math>, and <math>c</math>. Thus <math>\dfrac{abc}{4K}=R</math>, and <math>a+b+c=P</math>. We plug these in: | |||
<math>\dfrac{K(a+b+c)}{\dfrac{a^3b^3c^3}{64K^3}}=\dfrac{64K^4(a+b+c)}{a^3b^3c^3}</math>. | |||
<math>\dfrac{ | Now Heron's formula states that <math>K=\sqrt{(\dfrac{a+b+c}{2})(\dfrac{-a+b+c}{2})(\dfrac{a-b+c}{2})(\dfrac{a+b-c}{2})}</math>. Thus, | ||
<cmath>\dfrac{KP}{R^3}=\dfrac{(a+b+c)^3(-a+b+c)^2(a-b+c)^2(a+b-c)^2}{4a^3b^3c^3}</cmath> | |||
{{incomplete|solution}} | {{incomplete|solution}} | ||
==See also== | ==See also== | ||
{{CanadaMO box|year=2005|num-b=3|num-a=5}} | {{CanadaMO box|year=2005|num-b=3|num-a=5}} | ||
[[Category:Olympiad Geometry Problems]] | [[Category:Olympiad Geometry Problems]] | ||
Revision as of 10:16, 5 May 2008
Problem
Let
be a triangle with circumradius
, perimeter
and area
. Determine the maximum value of
.
Solution
Let the sides of triangle
be
,
, and
. Thus
, and
. We plug these in:
.
Now Heron's formula states that
. Thus,
See also
| 2005 Canadian MO (Problems) | ||
| Preceded by Problem 3 |
1 • 2 • 3 • 4 • 5 | Followed by Problem 5 |