2006 AIME I Problems/Problem 1: Difference between revisions
m rv |
asymptote |
||
| Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
In quadrilateral <math> ABCD , \angle B </math> is a right angle, diagonal <math> \overline{AC} </math> is perpendicular to <math> \overline{CD}, AB=18, BC=21, </math> and <math> CD=14. </math> Find the perimeter of <math> ABCD. </math> | In [[quadrilateral]] <math> ABCD , \angle B </math> is a right angle, diagonal <math> \overline{AC} </math> is [[perpendicular]] to <math> \overline{CD}, AB=18, BC=21, </math> and <math> CD=14. </math> Find the perimeter of <math> ABCD. </math> | ||
== Solution == | == Solution == | ||
From the problem statement, we construct the following diagram: < | From the problem statement, we construct the following diagram: | ||
<center><asy> | |||
pointpen = black; pathpen = black + linewidth(0.65); | |||
pair C=(0,0), D=(0,-14),A=(-(961-196)^.5,0),B=IP(circle(C,21),circle(A,18)); | |||
D(MP("A",A,W)--MP("B",B,N)--MP("C",C,E)--MP("D",D,E)--A--C); D(rightanglemark(A,C,D,40)); D(rightanglemark(A,B,C,40)); | |||
</asy></center><!-- Asymptote replacement for Image:Aime06i.1.PNG by joml88 --> | |||
Using the [[Pythagorean Theorem]]: | Using the [[Pythagorean Theorem]]: | ||
| Line 23: | Line 27: | ||
<div style="text-align:center"><math> (AD)= 31 </math></div> | <div style="text-align:center"><math> (AD)= 31 </math></div> | ||
So the perimeter is <math> 18+21+14+31=84 </math>, and the answer is <math>084</math>. | So the perimeter is <math> 18+21+14+31=84 </math>, and the answer is <math>\boxed{084}</math>. | ||
== See also == | == See also == | ||
Revision as of 18:43, 25 April 2008
Problem
In quadrilateral
is a right angle, diagonal
is perpendicular to
and
Find the perimeter of
Solution
From the problem statement, we construct the following diagram:
![[asy] pointpen = black; pathpen = black + linewidth(0.65); pair C=(0,0), D=(0,-14),A=(-(961-196)^.5,0),B=IP(circle(C,21),circle(A,18)); D(MP("A",A,W)--MP("B",B,N)--MP("C",C,E)--MP("D",D,E)--A--C); D(rightanglemark(A,C,D,40)); D(rightanglemark(A,B,C,40)); [/asy]](http://latex.artofproblemsolving.com/f/e/5/fe5ba5b6cc93f6a188115c7f4281a190091a9844.png)
Using the Pythagorean Theorem:
Substituting
for
:
Plugging in the given information:
So the perimeter is
, and the answer is
.
See also
| 2006 AIME I (Problems • Answer Key • Resources) | ||
| Preceded by First Question |
Followed by Problem 2 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||