Art of Problem Solving

2025 AMC 8 Problems/Problem 1: Difference between revisions

m Protected "2025 AMC 8 Problems/Problem 1" ([Edit=Allow only administrators] (expires 17:59, 29 January 2025 (UTC)) [Move=Allow only administrators] (expires 17:59, 29 January 2025 (UTC)))
Bepin999 (talk | contribs)
No edit summary
Line 1: Line 1:
The 2025 AMC 8 is not held yet. '''Please do not post false problems.'''
The eight-pointed star, shown in the figure below, is a popular quilting pattern. What percent of the entire \(4\times4\) grid is covered by the star?
 
 
<asy>
path x = (0,1)--(1,2)--(2,2)--(1,1)--cycle;
path y = reflect((0,0),(4,4)) * x;
 
fill(x, gray(0.6));
fill(rotate(90, (2,2)) * x, gray(0.6));
fill(rotate(180, (2,2)) * x, gray(0.6));
fill(rotate(270, (2,2)) * x, gray(0.6));
 
fill(y, gray(0.8));
fill(rotate(90, (2,2)) * y, gray(0.8));
fill(rotate(180, (2,2)) * y, gray(0.8));
fill(rotate(270, (2,2)) * y, gray(0.8));
 
draw((1,1)--(3,3));
draw((3,1)--(1,3));
 
add(grid(4,4));
 
path w = (1,0)--(2,1)--(3,0);
 
draw(w);
draw(rotate(90, (2,2)) * w);
draw(rotate(180, (2,2)) * w);
draw(rotate(270, (2,2)) * w);
</asy>
 
<math>\textbf{(A)}\ 40 \qquad \textbf{(B)}\ 50 \qquad \textbf{(C)}\ 60 \qquad \textbf{(D)}\ 75 \qquad \textbf{(E)}\ 80</math>

Revision as of 21:45, 29 January 2025

The eight-pointed star, shown in the figure below, is a popular quilting pattern. What percent of the entire \(4\times4\) grid is covered by the star?


[asy] path x = (0,1)--(1,2)--(2,2)--(1,1)--cycle; path y = reflect((0,0),(4,4)) * x;  fill(x, gray(0.6)); fill(rotate(90, (2,2)) * x, gray(0.6)); fill(rotate(180, (2,2)) * x, gray(0.6)); fill(rotate(270, (2,2)) * x, gray(0.6));  fill(y, gray(0.8)); fill(rotate(90, (2,2)) * y, gray(0.8)); fill(rotate(180, (2,2)) * y, gray(0.8)); fill(rotate(270, (2,2)) * y, gray(0.8));  draw((1,1)--(3,3)); draw((3,1)--(1,3));  add(grid(4,4));  path w = (1,0)--(2,1)--(3,0);  draw(w); draw(rotate(90, (2,2)) * w); draw(rotate(180, (2,2)) * w); draw(rotate(270, (2,2)) * w); [/asy]

$\textbf{(A)}\ 40 \qquad \textbf{(B)}\ 50 \qquad \textbf{(C)}\ 60 \qquad \textbf{(D)}\ 75 \qquad \textbf{(E)}\ 80$