2024 AMC 12B Problems/Problem 19: Difference between revisions
No edit summary |
|||
| Line 34: | Line 34: | ||
==Solution #2== | ==Solution #2== | ||
From <math>\triangle ABC</math>'s side lengths of 14, we get OF = OC = OE =<cmath>\frac{14\sqrt{3}}{3} </cmath> | From <math>\triangle ABC</math>'s side lengths of 14, we get <math>OF = OC = OE =</math> | ||
We let angle FOC = | <cmath>\frac{14\sqrt{3}}{3}.</cmath> | ||
And therefore angle EOC = 120 - | We let angle FOC = <math>\theta</math> | ||
And therefore angle EOC = 120 - <math>\theta</math> | |||
The answer would be | The answer would be <math>3([\triangle FOC] + [\triangle COE])</math> | ||
Which area <math>\triangle FOC</math> = 0.5 | Which area <math>\triangle FOC</math> = <math>0.5\left(\frac{14\sqrt{3}}{3}\right)^2 \sin(\theta)</math> | ||
And area <math>\triangle COE</math> = 0.5 | And area <math>\triangle COE</math> = <math>0.5\left(\frac{14\sqrt{3}}{3}\right)^2 \sin(120 - \theta)</math> | ||
So we have that | |||
3 | <cmath>3\cdot \frac{1}{2}\cdot \left(\frac{14\sqrt{3}}{3}\right)^2 (\sin(\theta)+\sin(120 - \theta)) = 91\sqrt{3}</cmath> | ||
Which <cmath> sin(\theta)+sin(120 - \theta) = \frac{91\sqrt{3}}{98} </cmath> | Which means | ||
<cmath>\sin(\theta)+\sin(120 - \theta) = \frac{91\sqrt{3}}{98}</cmath> | |||
<cmath>\frac{1}{2}\cos(\theta)+\frac{\sqrt{3}}{2}\sin(\theta) = \frac{91}{98}</cmath> | |||
<cmath>\sin(\theta + 30) = \frac{91}{98}</cmath> | |||
<cmath>\cos (\theta + 30) = \frac{21\sqrt{3}}{98}</cmath> | |||
<cmath>\tan(\theta + 30) = \frac{91}{21\sqrt{3}} = \frac{91\sqrt{3}}{63}</cmath> | |||
Now, <math>\tan(\theta)</math> can be calculated using the addition identity, which gives the answer of | |||
<cmath>\boxed{\text{(B) }\frac{5\sqrt{3}}{11}}.</cmath> | |||
~mitsuihisashi14 | ~mitsuihisashi14 | ||
Revision as of 14:40, 15 December 2024
Problem 19
Equilateral
with side length
is rotated about its center by angle
, where
, to form
. See the figure. The area of hexagon
is
. What is
?
Solution 1
Let O be circumcenter of the equilateral triangle
Easily get
is invalid given
,
Solution #2
From
's side lengths of 14, we get
We let angle FOC =
And therefore angle EOC = 120 -
The answer would be
Which area
=
And area
=
So we have that
Which means
Now,
can be calculated using the addition identity, which gives the answer of
~mitsuihisashi14 ~luckuso (fixed Latex error )
Video Solution by SpreadTheMathLove
https://www.youtube.com/watch?v=akLlCXKtXnk
See also
| 2024 AMC 12B (Problems • Answer Key • Resources) | |
| Preceded by Problem 18 |
Followed by Problem 20 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America.