2024 AMC 12B Problems/Problem 19: Difference between revisions
| Line 23: | Line 23: | ||
<cmath> sin(\theta) + sin(120 - \theta) = \frac{13\sqrt{3}}{14} </cmath> | <cmath> sin(\theta) + sin(120 - \theta) = \frac{13\sqrt{3}}{14} </cmath> | ||
<cmath> sin(\theta) + \frac{ \sqrt{3}}{2}cos( \theta) +\frac{ \sqrt{1}}{2}sin( \theta) = \frac{13\sqrt{3}}{14} </cmath> | <cmath> sin(\theta) + \frac{ \sqrt{3}}{2}cos( \theta) +\frac{ \sqrt{1}}{2}sin( \theta) = \frac{13\sqrt{3}}{14} </cmath> | ||
<cmath> \sqrt{3} sin( \theta) + cos( \theta) = \frac{13 }{ | <cmath> \sqrt{3} sin( \theta) + cos( \theta) = \frac{13 }{7} </cmath> | ||
<cmath> cos( \theta) = \frac{13 }{ | <cmath> cos( \theta) = \frac{13 }{7} - \sqrt{3} sin( \theta) </cmath> | ||
<cmath> \frac{169 }{49} - \frac{26\sqrt{3} }{7} sin( \theta) + 4 sin( \theta)^2 =0 </cmath> | <cmath> \frac{169 }{49} - \frac{26\sqrt{3} }{7} sin( \theta) + 4 sin( \theta)^2 =0 </cmath> | ||
<cmath> sin( \theta) = \frac{5\sqrt{3} }{14} or \frac{4\sqrt{3} }{7} </cmath> | <cmath> sin( \theta) = \frac{5\sqrt{3} }{14} or \frac{4\sqrt{3} }{7} </cmath> | ||
Revision as of 14:29, 15 November 2024
Problem 19
Equilateral
with side length
is rotated about its center by angle
, where
, to form
. See the figure. The area of hexagon
is
. What is
?
Solution 1
let O be circumcenter of the equilateral triangle
OF =
2(area(OFC) + area (OCE)) =
is invalid given
Solution #2
From
's side lengths of 14, we get OF = OC = OE =
We let angle FOC = (
)
And therefore angle EOC = 120 - (
)
The answer would be 3 * (Area
+ Area
)
Which area
= 0.5 *
And area
= 0.5 *
Therefore the answer would be
3 * 0.5 * (
Which
So
Therefore
And
Which
can be calculated using addition identity, which gives the answer of
(I would really appreciate if someone can help me fix my code and format)
~mitsuihisashi14 ~luckuso (fixed Latex error )
See also
| 2024 AMC 12B (Problems • Answer Key • Resources) | |
| Preceded by Problem 18 |
Followed by Problem 20 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America.