2024 AMC 10B Problems/Problem 11: Difference between revisions
No edit summary |
|||
| Line 2: | Line 2: | ||
==Problem== | ==Problem== | ||
In the figure below <math>WXYZ</math> is a rectangle with <math>WX=4</math> and <math>WZ=8</math>. Point <math>M</math> lies <math>\overline{XY}</math>, point <math>A</math> lies on <math>\overline{YZ}</math>, and <math>\angle WMA</math> is a right angle. The areas of <math>\triangle WXM</math> and <math>\triangle WAZ</math> are equal. What is the area of <math>\triangle WMA</math>? | |||
<asy> | |||
pair X = (0, 0); | |||
pair W = (0, 4); | |||
pair Y = (8, 0); | |||
pair Z = (8, 4); | |||
label("$X$", X, dir(180)); | |||
label("$W$", W, dir(180)); | |||
label("$Y$", Y, dir(0)); | |||
label("$Z$", Z, dir(0)); | |||
draw(W--X--Y--Z--cycle); | |||
dot(X); | |||
dot(Y); | |||
dot(W); | |||
dot(Z); | |||
pair M = (2, 0); | |||
pair A = (8, 3); | |||
label("$A$", A, dir(0)); | |||
dot(M); | |||
dot(A); | |||
draw(W--M--A--cycle); | |||
markscalefactor = 0.05; | |||
draw(rightanglemark(W, M, A)); | |||
label("$M$", M, dir(-90)); | |||
</asy> | |||
<math> | |||
\textbf{(A) }13 \qquad | |||
\textbf{(B) }14 \qquad | |||
\textbf{(C) }15 \qquad | |||
\textbf{(D) }16 \qquad | |||
\textbf{(E) }17 \qquad | |||
</math> | |||
[[2024 AMC 12B Problems/Problem 7|Solution]] | |||
==Solution 1== | ==Solution 1== | ||
Revision as of 05:38, 14 November 2024
- The following problem is from both the 2024 AMC 10B #11 and 2024 AMC 12B #7, so both problems redirect to this page.
Problem
In the figure below
is a rectangle with
and
. Point
lies
, point
lies on
, and
is a right angle. The areas of
and
are equal. What is the area of
?
Solution 1
See also
| 2024 AMC 10B (Problems • Answer Key • Resources) | ||
| Preceded by Problem 10 |
Followed by Problem 12 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
| 2024 AMC 12B (Problems • Answer Key • Resources) | |
| Preceded by Problem 6 |
Followed by Problem 8 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America.