Art of Problem Solving

2024 AMC 12A Problems/Problem 1: Difference between revisions

Djg6565 (talk | contribs)
No edit summary
Djg6565 (talk | contribs)
No edit summary
Line 5: Line 5:
(b) <math>\frac{1}{2} \int_{0}^{2} x \, dx</math>
(b) <math>\frac{1}{2} \int_{0}^{2} x \, dx</math>


(c) <math>e^{i \pi}+2</math>
(c) <math>\left[\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x\right]^{i\pi} + 2</math>


(d) <math>\sin^2 \theta + \cos^2 \theta</math>
(d) <math>\sin^2 \theta + \cos^2 \theta</math>


(e) <math>\lim_{{x \to 0}} \frac{\sin x}{x}</math>
(e) <math>\lim_{{x \to 0}} \frac{\sin x}{x}</math>

Revision as of 21:43, 19 August 2024

If $x+1=2$, what is $x$?

(a) $1$

(b) $\frac{1}{2} \int_{0}^{2} x \, dx$

(c) $\left[\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x\right]^{i\pi} + 2$

(d) $\sin^2 \theta + \cos^2 \theta$

(e) $\lim_{{x \to 0}} \frac{\sin x}{x}$