Art of Problem Solving

2024 AMC 12A Problems/Problem 1: Difference between revisions

Djg6565 (talk | contribs)
No edit summary
Djg6565 (talk | contribs)
No edit summary
Line 1: Line 1:
If <math>x+1=2</math>, what is <math>x</math>?
If <math>x+1=2</math>, what is <math>x</math>?


(a) <math>1</math>  (b) <math>-(-(-(-1)))</math> (c) <math>e^{i \pi}+2</math> (d) <math>\sin^2 \theta + \cos^2 \theta</math> (e) <math>\lim_{{x \to 0}} \frac{\sin x}{x}</math>
(a) <math>1</math>   
(b) <math>-(-(-(-1)))</math>  
(c) <math>e^{i \pi}+2</math>  
(d) <math>\sin^2 \theta + \cos^2 \theta</math>  
(e) <math>\lim_{{x \to 0}} \frac{\sin x}{x}</math>

Revision as of 21:39, 19 August 2024

If $x+1=2$, what is $x$?

(a) $1$ (b) $-(-(-(-1)))$ (c) $e^{i \pi}+2$ (d) $\sin^2 \theta + \cos^2 \theta$ (e) $\lim_{{x \to 0}} \frac{\sin x}{x}$