1971 AHSME Problems/Problem 35: Difference between revisions
created solution page |
diagram |
||
| Line 10: | Line 10: | ||
== Solution == | == Solution == | ||
<asy> | |||
import geometry; | |||
point A = origin; | |||
point B = dir(135); | |||
point C = (0,sqrt(2)); | |||
point D = dir(45); | |||
point X = 1/(1+sqrt(2)/2)*(B-C)+C; | |||
point Y = 1/(1+sqrt(2)/2)*(D-C)+C; | |||
// Circles | |||
draw(circle(A,1)); | |||
draw(incircle(triangle(C,X,Y))); | |||
// Segments XY and BD | |||
draw(X--Y); | |||
draw(B--D); | |||
// Square | |||
draw(A--B--C--D--cycle); | |||
// Point Labels | |||
dot(A); | |||
label("A",A,S); | |||
dot(B); | |||
label("B",B,W); | |||
dot(C); | |||
label("C",C,N); | |||
dot(D); | |||
label("D",D,E); | |||
dot(X); | |||
label("X",X,NW); | |||
dot(Y); | |||
label("Y",Y,NE); | |||
</asy> | |||
<math>\boxed{\textbf{(C) }(16+12\sqrt2):1}</math>. | <math>\boxed{\textbf{(C) }(16+12\sqrt2):1}</math>. | ||
Revision as of 18:38, 8 August 2024
Problem
Each circle in an infinite sequence with decreasing radii is tangent externally to the one following it and to both sides of a given right angle. The ratio of the area of the first circle to the sum of areas of all other circles in the sequence, is
Solution
.
See Also
| 1971 AHSC (Problems • Answer Key • Resources) | ||
| Preceded by Problem 34 |
Followed by Last Problem | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 | ||
| All AHSME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America.