Art of Problem Solving

2002 AMC 10P Problems/Problem 11: Difference between revisions

Wes (talk | contribs)
No edit summary
Wes (talk | contribs)
Line 16: Line 16:


== Solution 1==
== Solution 1==
 
By the factor theorem, <math>x-2</math> is a factor of <math>P(x)</math> if and only if <math>P(2)=0.</math> Therefore, <math>x</math> must equal <math>2.</math> $P(2)=0=
 


== See also ==
== See also ==
{{AMC10 box|year=2002|ab=P|num-b=10|num-a=12}}
{{AMC10 box|year=2002|ab=P|num-b=10|num-a=12}}
{{MAA Notice}}
{{MAA Notice}}

Revision as of 20:58, 14 July 2024

Problem

Let $P(x)=kx^3 + 2k^2x^2+k^3.$ Find the sum of all real numbers $k$ for which $x-2$ is a factor of $P(x).$

$\text{(A) }-8 \qquad \text{(B) }-4 \qquad \text{(C) }0 \qquad \text{(D) }5 \qquad \text{(E) }8$

Solution 1

By the factor theorem, $x-2$ is a factor of $P(x)$ if and only if $P(2)=0.$ Therefore, $x$ must equal $2.$ $P(2)=0=

See also

2002 AMC 10P (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America.