1977 AHSME Problems/Problem 29: Difference between revisions
| Line 11: | Line 11: | ||
[[1977 AHSME Problems/Problem 29|Solution]] | [[1977 AHSME Problems/Problem 29|Solution]] | ||
==Solution== | ==Solution (Official MAA)== | ||
Let <math>a = x^2</math>, <math>b = y^2</math>, <math>c = z^2</math>. Then | |||
<cmath> 0 \leq (a-b)^2 + (b-c)^2 + (c-a)^2</cmath> | |||
<cmath>\dfrac{ab+bc+ca}{a^2 + b^2 + c^2} \leq 1;</cmath> | |||
<cmath>\dfrac{a^2 + b^2 + c^2 + 2(ab+bc+ca)}{a^2 + b^2 + c^2} \leq 3;</cmath> | |||
<cmath>(a+b+c)^2 \leq 3(a^2 + b^2 + c^2).</cmath> | |||
Therefore <math>n\leq 3</math>. Choosing <math>a = b = c > 0</math> shows <math>n</math> is not less than three. | |||
Latest revision as of 11:21, 21 April 2024
Problem 29
Find the smallest integer
such that
for all real numbers
, and
.
Solution (Official MAA)
Let
,
,
. Then
Therefore
. Choosing
shows
is not less than three.