2024 USAJMO Problems/Problem 6: Difference between revisions
Erinb28lms (talk | contribs) mNo edit summary |
Erinb28lms (talk | contribs) |
||
| Line 2: | Line 2: | ||
== Problem == | == Problem == | ||
Point <math>D</math> is selected inside acute triangle <math>ABC</math> so that <math>\angle DAC=\angle ACB</math> and <math>\angle BDC=90^\circ+\angle BAC</math>. Point <math>E</math> is chosen on ray <math>BD</math> so that <math>AE=EC</math>. Let <math>M</math> be the midpoint of <math>BC</math>. Show that line <math>AB</math> is tangent to the circumcircle. | Point <math>D</math> is selected inside acute triangle <math>ABC</math> so that <math>\angle DAC=\angle ACB</math> and <math>\angle BDC=90^\circ+\angle BAC</math>. Point <math>E</math> is chosen on ray <math>BD</math> so that <math>AE=EC</math>. Let <math>M</math> be the midpoint of <math>BC</math>. Show that line <math>AB</math> is tangent to the circumcircle of triangle <math>BEM</math>. | ||
== Solution 1 == | == Solution 1 == | ||
Revision as of 12:42, 23 March 2024
Problem
Point
is selected inside acute triangle
so that
and
. Point
is chosen on ray
so that
. Let
be the midpoint of
. Show that line
is tangent to the circumcircle of triangle
.
Solution 1
See Also
| 2024 USAJMO (Problems • Resources) | ||
| Preceded by Problem 5 |
Followed by Last Question | |
| 1 • 2 • 3 • 4 • 5 • 6 | ||
| All USAJMO Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America.
of triangle
.