2007 Cyprus MO/Lyceum/Problem 12: Difference between revisions
I_like_pie (talk | contribs) mNo edit summary |
m →Problem |
||
| Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
The function <math>f : \ | The function <math>f : \mathbb{R} \rightarrow \mathbb{R}</math> has the properties <math>f(0) = -1</math> and <math>f(xy)+f(x)+f(y)=x+y+xy+k\ \ \ \forall x,y \in \Re</math>, where <math>k \in \Re</math> is a constant. The value of <math>f(-1)</math> is | ||
<math> \mathrm{(A) \ } 1\qquad \mathrm{(B) \ } -1\qquad \mathrm{(C) \ } 0\qquad \mathrm{(D) \ } -2\qquad \mathrm{(E) \ } 3</math> | <math> \mathrm{(A) \ } 1\qquad \mathrm{(B) \ } -1\qquad \mathrm{(C) \ } 0\qquad \mathrm{(D) \ } -2\qquad \mathrm{(E) \ } 3</math> | ||
Latest revision as of 23:19, 18 January 2024
Problem
The function
has the properties
and
, where
is a constant. The value of
is
Solution
First, to determine the value of
, let
.
, so
.
Now, to determine the value of
, let
and
.
See also
| 2007 Cyprus MO, Lyceum (Problems) | ||
| Preceded by Problem 11 |
Followed by Problem 13 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||