Art of Problem Solving

Bisector: Difference between revisions

Vvsss (talk | contribs)
Vvsss (talk | contribs)
Line 5: Line 5:
Let <math>AA', BB',</math> and <math>CC'</math> be the bisectors of <math>\triangle ABC.</math>  
Let <math>AA', BB',</math> and <math>CC'</math> be the bisectors of <math>\triangle ABC.</math>  


he segments <math>BB'</math> and <math>A'C'</math> meet at point <math>D.</math> Find <cmath>\frac {BI}{BB'}, \frac {BD}{BB'}, \frac {DA'}{DC'}.</cmath>
he segments <math>BB'</math> and <math>A'C'</math> meet at point <math>D.</math> Find <cmath>\frac {BI}{BB'}, \frac {DA'}{DC'}, \frac {BD}{BB'}.</cmath>


<i><b>Solution</b></i>
<i><b>Solution</b></i>

Revision as of 16:12, 7 December 2023

Division of bisector

Let a triangle $\triangle ABC, BC = a, AC = b, AB = c$ be given.

Let $AA', BB',$ and $CC'$ be the bisectors of $\triangle ABC.$

he segments $BB'$ and $A'C'$ meet at point $D.$ Find \[\frac {BI}{BB'}, \frac {DA'}{DC'}, \frac {BD}{BB'}.\]

Solution

\[\frac {BA'}{CA'} = \frac {BA}{CA} = \frac {c}{b}, BA' + CA' = BC = a \implies BA' = \frac {a \cdot c}{b+c}.\]

Similarly $BC' = \frac {a \cdot c}{a+b},  B'C = \frac {a \cdot b}{a+b}.$ \[\frac {BI}{IB'} = \frac {a}{B'C} = \frac{a+c}{b} \implies \frac {BI}{BB'} = \frac {a+c}{a + b +c}.\]

\[\frac {DA'}{DC'} = \frac {BA'}{BC'} =  \frac {a+ b}{b +c}.\]

Denote $\angle ABC = 2 \beta.$ Bisector $BB' = 2 \frac {a \cdot c}{a + c} \cos \beta.$

Bisector $BD = 2 \frac {BC' \cdot BA'}{BC' + BA'} \cos \beta \implies$ \[\frac {BD}{BB'} = \frac{a+c}{a+2b+c}.\] vladimir.shelomovskii@gmail.com, vvsss