1991 IMO Problems/Problem 6: Difference between revisions
created page; gave one argument and linked to second argument by Osmun Nal |
|||
| Line 20: | Line 20: | ||
== Solution 2 == | == Solution 2 == | ||
The argument above would not work for <math>a=1</math>, since <math>{\textstyle\sum \frac{1}{k^a}}</math> only converges for <math>a>1</math>. But Osmun Nal argues [https://www.youtube.com/watch?v=3v3CMQS_5Cc in this video] that <math>x_k=k\sqrt{2}-\lfloor k\sqrt{2}\rfloor</math> satisfies the stronger inequality <math>|x_i-x_j|\cdot |i-j|\geq 1</math> for all distinct <math>i,j</math>; in other words, this sequence simultaneously solves the problem for all <math>a\geq 1</math> simultaneously. | The argument above would not work for <math>a=1</math>, since <math>{\textstyle\sum \frac{1}{k^a}}</math> only converges for <math>a>1</math>. But Osmun Nal argues [https://www.youtube.com/watch?v=3v3CMQS_5Cc in this video] that <math>x_k=k\sqrt{2}-\lfloor k\sqrt{2}\rfloor</math> satisfies the stronger inequality <math>|x_i-x_j|\cdot |i-j|\geq 1</math> for all distinct <math>i,j</math>; in other words, this sequence simultaneously solves the problem for all <math>a\geq 1</math> simultaneously. | ||
==See Also== | |||
{{IMO box|year=1991|num-b=5|after=Last Question}} | |||
[[Category:Olympiad Geometry Problems]] | |||
[[Category:3D Geometry Problems]] | |||
Revision as of 23:38, 16 November 2023
Problem
An infinite sequence
of real numbers is said to be bounded if there is a constant
such that
for every
.
Given any real number
, construct a bounded infinite sequence
such that
for every pair of distinct nonnegative integers
.
Solution 1
Since
, the series
is convergent; let
be the sum of this convergent series. Let
be the interval
(or any bounded subset of measure
).
Suppose that we have chosen points
satisfying
for all distinct
. We show that we can choose
such that
holds for all distinct
. The only new cases are when one number (WLOG
) is equal to
, so we must guarantee that
for all
.
Let
be the interval
, of length
. The points that are valid choices for
are precisely the points of
, so we must show that this set is nonempty. The total length
is at most the sum of the lengths
. This is
.
Therefore the total measure of
is
, so
has positive measure and thus is nonempty. Choosing any
and continuing by induction constructs the desired sequence.
Solution 2
The argument above would not work for
, since
only converges for
. But Osmun Nal argues in this video that
satisfies the stronger inequality
for all distinct
; in other words, this sequence simultaneously solves the problem for all
simultaneously.
See Also
| 1991 IMO (Problems) • Resources | ||
| Preceded by Problem 5 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Last Question |
| All IMO Problems and Solutions | ||