2023 AMC 12B Problems/Problem 24: Difference between revisions
Eunicorn0716 (talk | contribs) Created page with "Suppose that <math>a,b,c,</math> and <math>d</math> are positive integers satisfying all of the following relations. What is <math>gcd(a,b,c,d)?</math>" |
No edit summary |
||
| Line 1: | Line 1: | ||
Suppose that <math>a,b,c,</math> and <math>d</math> are positive integers satisfying all of the following relations. | Suppose that <math>a,b,c,</math> and <math>d</math> are positive integers satisfying all of the following relations. | ||
What is <math>gcd(a,b,c,d)?</math> | What is <math>gcd(a,b,c,d)?</math> | ||
==Solution== | |||
Denote by <math>\nu_p (x)</math> the number of prime factor <math>p</math> in number <math>x</math>. | |||
We index Equations given in this problem from (1) to (7). | |||
First, we compute <math>\nu_2 (x)</math> for <math>x \in \left\{ a, b, c, d \right\}</math>. | |||
Equation (5) implies <math>\max \left\{ \nu_2 (b), \nu_2 (c) \right\} = 1</math>. | |||
Equation (2) implies <math>\max \left\{ \nu_2 (a), \nu_2 (b) \right\} = 3</math>. | |||
Equation (6) implies <math>\max \left\{ \nu_2 (b), \nu_2 (d) \right\} = 2</math>. | |||
Equation (1) implies <math>\nu_2 (a) + \nu_2 (b) + \nu_2 (c) + \nu_2 (d) = 6</math>. | |||
Therefore, all above jointly imply <math>\nu_2 (a) = 3</math>, <math>\nu_2 (d) = 2</math>, and <math>\left( \nu_2 (b), \nu_2 (c) \right) = \left( 0 , 1 \right)</math> or <math>\left( 1, 0 \right)</math>. | |||
Second, we compute <math>\nu_3 (x)</math> for <math>x \in \left\{ a, b, c, d \right\}</math>. | |||
Equation (2) implies <math>\max \left\{ \nu_3 (a), \nu_3 (b) \right\} = 2</math>. | |||
Equation (3) implies <math>\max \left\{ \nu_3 (a), \nu_3 (c) \right\} = 3</math>. | |||
Equation (4) implies <math>\max \left\{ \nu_3 (a), \nu_3 (d) \right\} = 3</math>. | |||
Equation (1) implies <math>\nu_3 (a) + \nu_3 (b) + \nu_3 (c) + \nu_3 (d) = 9</math>. | |||
Therefore, all above jointly imply <math>\nu_3 (c) = 3</math>, <math>\nu_3 (d) = 3</math>, and <math>\left( \nu_3 (a), \nu_3 (b) \right) = \left( 1 , 2 \right)</math> or <math>\left( 2, 1 \right)</math>. | |||
Third, we compute <math>\nu_5 (x)</math> for <math>x \in \left\{ a, b, c, d \right\}</math>. | |||
Equation (5) implies <math>\max \left\{ \nu_5 (b), \nu_5 (c) \right\} = 2</math>. | |||
Equation (2) implies <math>\max \left\{ \nu_5 (a), \nu_5 (b) \right\} = 3</math>. | |||
Thus, <math>\nu_5 (a) = 3</math>. | |||
From Equations (5)-(7), we have either <math>\nu_5 (b) \leq 1</math> and <math>\nu_5 (c) = \nu_5 (d) = 2</math>, or <math>\nu_5 (b) = 2</math> and <math>\max \left\{ \nu_5 (c), \nu_5 (d) \right\} = 2</math>. | |||
Equation (1) implies <math>\nu_5 (a) + \nu_5 (b) + \nu_5 (c) + \nu_5 (d) = 7</math>. | |||
Thus, for <math>\nu_5 (b)</math>, <math>\nu_5 (c)</math>, <math>\nu_5 (d)</math>, there must be two 2s and one 0. | |||
Therefore, | |||
<cmath> | |||
\begin{align*} | |||
{\rm gcd} (a,b,c,d) | |||
& = \Pi_{p \in \{ 2, 3, 5\}} p^{\min\{ \nu_p (a), \nu_p(b) , \nu_p (c), \nu_p(d) \}} \\ | |||
& = 2^0 \cdot 3^1 \cdot 5^0 \\ | |||
& = \boxed{\textbf{(C) 3}}. | |||
\end{align*} | |||
</cmath> | |||
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com) | |||
Revision as of 17:44, 15 November 2023
Suppose that
and
are positive integers satisfying all of the following relations.
What is
Solution
Denote by
the number of prime factor
in number
.
We index Equations given in this problem from (1) to (7).
First, we compute
for
.
Equation (5) implies
.
Equation (2) implies
.
Equation (6) implies
.
Equation (1) implies
.
Therefore, all above jointly imply
,
, and
or
.
Second, we compute
for
.
Equation (2) implies
.
Equation (3) implies
.
Equation (4) implies
.
Equation (1) implies
.
Therefore, all above jointly imply
,
, and
or
.
Third, we compute
for
.
Equation (5) implies
.
Equation (2) implies
.
Thus,
.
From Equations (5)-(7), we have either
and
, or
and
.
Equation (1) implies
.
Thus, for
,
,
, there must be two 2s and one 0.
Therefore,
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)