Art of Problem Solving

2020 AMC 10B Problems/Problem 7: Difference between revisions

Airbus-a321 (talk | contribs)
No edit summary
Airbus-a321 (talk | contribs)
Line 15: Line 15:
~ Wiselion
~ Wiselion
==Solution 3==
==Solution 3==
It can be seen that the problem is just asking for squares that are multiples of six. Thus, all squares of multiples of six can be listed out: <math>6^2</math>, <math>12^2</math>, <math>18^2</math>, <math>24^2</math>, <math>30^2</math>, <math>36^2</math>, and <math>42^2</math>. <math>48^2</math>=<math>2196 > 2020</math>. There are seven valid answers.
It can be seen that the problem is just asking for squares that are multiples of six. Thus, all squares of multiples of six can be listed out: <math>6^2</math>, <math>12^2</math>, <math>18^2</math>, <math>24^2</math>, <math>30^2</math>, <math>36^2</math>, and <math>42^2</math>. <math>48^2</math>=<math>2196 > 2020</math>. There are <math>\boxed{\textbf{(A) }7}</math> valid answers.
~airbus-a321, November 2023
~airbus-a321, November 2023



Revision as of 21:36, 3 November 2023

Problem

How many positive even multiples of $3$ less than $2020$ are perfect squares?

$\textbf{(A)}\ 7 \qquad\textbf{(B)}\ 8 \qquad\textbf{(C)}\  9 \qquad\textbf{(D)}\ 10 \qquad\textbf{(E)}\ 12$

Solution 1

Any even multiple of $3$ is a multiple of $6$, so we need to find multiples of $6$ that are perfect squares and less than $2020$. Any solution that we want will be in the form $(6n)^2$, where $n$ is a positive integer. The smallest possible value is at $n=1$, and the largest is at $n=7$ (where the expression equals $1764$). Therefore, there are a total of $\boxed{\textbf{(A)}\ 7}$ possible numbers.-PCChess

Solution 2

A even multiple square of $3$ can be represented by $3^2 \cdot 2^2 \cdot x^2$, where $3^2$ is the multiple or $3$ and $2^2$ makes it even. Simplifying we have $36^2 \cdot x^2$. We can divide $2020$ by $36$ (floor) and get $56$ see the result. We can then see that there are $7$ different values for $x$. It can't be larger or else $x^2 > 56$. And thus $\boxed{\textbf{(A) }7}$

~ Wiselion

Solution 3

It can be seen that the problem is just asking for squares that are multiples of six. Thus, all squares of multiples of six can be listed out: $6^2$, $12^2$, $18^2$, $24^2$, $30^2$, $36^2$, and $42^2$. $48^2$=$2196 > 2020$. There are $\boxed{\textbf{(A) }7}$ valid answers. ~airbus-a321, November 2023

Video Solution (HOW TO CREATIVELY PROBLEM SOLVE!!!)

https://www.youtube.com/watch?v=igjvQv-TCGE

Check It Out! Short & Straight-Forward Solution ~Education, The Study of Everything

Video Solutions

https://youtu.be/OHR_6U686Qg


https://youtu.be/5cDMRWNrH-U

~savannahsolver

Video Solution by OmegaLearn

https://youtu.be/ZhAZ1oPe5Ds?t=2241

~ pi_is_3.14

See Also

2020 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America.