2023 IMO Problems/Problem 4: Difference between revisions
| Line 6: | Line 6: | ||
==Solution== | ==Solution== | ||
We first solve for <math>a_1.</math> <math>a_1 = \sqrt{(x_1)(\frac{1}{x_1})} = \sqrt{1} = 1.</math> | We first solve for <math>a_1.</math> <math>a_1 = \sqrt{(x_1)(\frac{1}{x_1})} = \sqrt{1} = 1.</math> | ||
Now we solve for <math>a_{n+1}</math> in terms of <math>a_n</math> and <math>x.</math> <math>a_{n+1}^2\\ = (\sum^{n+1}_{k=1}x_k)(\sum^{n+1}_{k=1}\frac1{x_k}) \\= (x_{n+1}+\sum^{n}_{k=1}x_k)(\frac{1}{x_{n+1}}+\sum^{n}_{k=1}\frac1{x_k}) \\= 1 + \frac{1}{x_{n+1}} \sum^{n}_{k=1}x_k+x_{n+1}\sum^{n}_{k=1}\frac1{x_k} + (\sum^{n}_{k=1}x_k)(\sum^{n}_{k=1}\frac1{x_k})\\=1+\frac{1}{x_{n+1}} \sum^{n}_{k=1}x_k+x_{n+1}\sum^{n}_{k=1}\frac1{x_k}+a_n^2</math> | Now we solve for | ||
By AM-GM, <math>a_{n+1}^2 \ge 1+a_n^2 + 2 \sqrt{(\frac{1}{x_{n+1}} \sum^{n}_{k=1}x_k)(x_{n+1} \sum^{n}_{k=1} \frac1{x_k})} = 1 + a_n^2 + 2a_n = (a_n+1)^2 \\ </math> | <math>a_{n+1}</math> in terms of <math>a_n</math> and <math>x.</math> <math>a_{n+1}^2 \\ | ||
= (\sum^{n+1}_{k=1}x_k)(\sum^{n+1}_{k=1}\frac1{x_k}) \\ | |||
= (x_{n+1}+\sum^{n}_{k=1}x_k)(\frac{1}{x_{n+1}}+\sum^{n}_{k=1}\frac1{x_k}) \\ | |||
= 1+\frac{1}{x_{n+1}}\sum^{n}_{k=1}x_k+x_{n+1}\sum^{n}_{k=1}\frac1{x_k} + (\sum^{n}_{k=1}x_k)(\sum^{n}_{k=1}\frac1{x_k}) \\ | |||
= 1+\frac{1}{x_{n+1}} \sum^{n}_{k=1}x_k+x_{n+1}\sum^{n}_{k=1}\frac1{x_k}+a_n^2</math> | |||
By AM-GM, <math>a_{n+1}^2 \ge 1+a_n^2 + 2 \sqrt{(\frac{1}{x_{n+1}} \sum^{n}_{k=1}x_k)(x_{n+1} \sum^{n}_{k=1} \frac1{x_k})} = 1 + a_n^2 + 2a_n = (a_n+1)^2 \\ \text{}</math> | |||
Hence, <math>a_{n+1} \ge a_n.</math> However, this is not of much use, as we can only determine that <math>a_{2023} \ge 2023. \\ \text{}</math> | |||
Now, we solve for <math>a_{n+2}</math> in terms of <math>a_n</math> and <math>x.</math> | |||
<math>a_{n+2}^2 \\ | |||
= (\sum^{n+2}_{k=1}x_k)(\sum^{n+2}_{k=1}\frac1{x_k}) \\ | |||
= (x_{n+1}+x_{n+2}+\sum^{n}_{k=1}x_k)(\frac{1}{x_{n+1}}+\frac{1}{x_{n+2}}+\sum^{n}_{k=1}\frac1{x_k}) \\ | |||
= \frac{x_{n+1}}{x_{n+1}} + \frac{x_{n+1}}{x_{n+2}} + \frac{x_{n+2}}{x_{n+1}} + \frac{x_{n+2}}{x_{n+2}} + | |||
\frac{1}{x_{n+1}}\sum^{n}_{k=1}x_k + x_{n+1}\sum^{n}_{k=1}\frac1{x_k} + \frac{1}{x_{n+2}}\sum^{n}_{k=1}x_k + x_{n+2}\sum^{n}_{k=1}\frac1{x_k} + (\sum^{n}_{k=1}x_k)(\sum^{n}_{k=1}\frac1{x_k}) \\ | |||
= \frac{x_{n+1}}{x_{n+1}} + \frac{x_{n+1}}{x_{n+2}} + \frac{x_{n+2}}{x_{n+1}} + \frac{x_{n+2}}{x_{n+2}} + | |||
\frac{1}{x_{n+1}}\sum^{n}_{k=1}x_k + x_{n+1}\sum^{n}_{k=1}\frac1{x_k} + \frac{1}{x_{n+2}}\sum^{n}_{k=1}x_k + x_{n+2}\sum^{n}_{k=1}\frac1{x_k} + a_n^2 \\ \text{}</math> | |||
Again, by AM-GM, the above equation becomes | |||
<math>a_{n+2}^2 \ge 4 \sqrt[4]{(\frac{x_{n+1}}{x_{n+1}})(\frac{x_{n+1}}{x_{n+2}})(\frac{x_{n+2}}{x_{n+1}})(\frac{x_{n+2}}{x_{n+2}})} + | |||
4\sqrt[4]{ | |||
(\frac{1}{x_{n+1}}\sum^{n}_{k=1}x_k)(x_{n+1}\sum^{n}_{k=1}\frac1{x_k})(\frac{1}{x_{n+2}}\sum^{n}_{k=1}x_k)(x_{n+2}\sum^{n}_{k=1}\frac1{x_k}) | |||
} | |||
+ a_n^2 = a_n^2+4a_n+4 = (a_n+2)^2 \\ \text{}</math> | |||
Hence, <math>a_{n+2} \ge a_{n} + 2,</math> but equality is achieved only when <math>\frac{x_{n+1}}{x_{n+1}},\frac{x_{n+1}}{x_{n+2}},\frac{x_{n+2}}{x_{n+1}}, </math> and <math>\frac{x_{n+2}}{x_{n+2}}</math> are equal. They can never be equal because there are no two equal <math>x_k.</math>So <math>a_{2023} \ge a_1 + 3\times \frac{2023-1}{2} = 1 + 3033 = 3034</math> | |||
Revision as of 00:19, 14 July 2023
Problem
Let
be pairwise different positive real numbers such that
is an integer for every
. Prove that
.
Solution
We first solve for
Now we solve for
in terms of
and
By AM-GM,
Hence,
However, this is not of much use, as we can only determine that
Now, we solve for
in terms of
and
Again, by AM-GM, the above equation becomes
Hence,
but equality is achieved only when
and
are equal. They can never be equal because there are no two equal
So