2019 AMC 10B Problems/Problem 15: Difference between revisions
m →Problem |
|||
| Line 42: | Line 42: | ||
Since we want <math>\left(w^2\sqrt{7}\right)^2</math>, multiplying both sides by <math>\sqrt{7}</math> gets us <math>w^2\sqrt{7} = \frac{2\sqrt{21}}{3}</math>. Now squaring gives <math>\left(\frac{2\sqrt{21}}{3}\right)^2 = \frac{4*21}{9} = \boxed{\textbf{(A) }\frac{28}{3}}</math>. | Since we want <math>\left(w^2\sqrt{7}\right)^2</math>, multiplying both sides by <math>\sqrt{7}</math> gets us <math>w^2\sqrt{7} = \frac{2\sqrt{21}}{3}</math>. Now squaring gives <math>\left(\frac{2\sqrt{21}}{3}\right)^2 = \frac{4*21}{9} = \boxed{\textbf{(A) }\frac{28}{3}}</math>. | ||
[Note: there is a mismatch of variables near the beginning that someone can fix: xw/2 is the area of the small triangle, which is actually the 30-60-90.] | |||
==Video Solution== | ==Video Solution== | ||
Latest revision as of 22:59, 22 March 2023
Problem
Right triangles
and
, have areas of 1 and 2, respectively. A side of
is congruent to a side of
, and a different side of
is congruent to a different side of
. What is the square of the product of the lengths of the other (third) sides of
and
?
Solution 1
First of all, let the two sides which are congruent be
and
, where
. The only way that the conditions of the problem can be satisfied is if
is the shorter leg of
and the longer leg of
, and
is the longer leg of
and the hypotenuse of
.
Notice that this means the value we are looking for is the square of
, which is just
.
The area conditions give us two equations:
and
.
This means that
and that
.
Taking the second equation, we get
, so since
,
.
Since
, we get
.
The value we are looking for is just
so the answer is
.
Solution 2
Like in Solution 1, we have
and
.
Squaring both equations yields
and
.
Let
and
. Then
, and
, so
.
We are looking for the value of
, so the answer is
.
Solution 3
Firstly, let the right triangles be
and
, with
being the smaller triangle. As in Solution 1, let
and
. Additionally, let
and
.
We are given that
and
, so using
, we have
and
. Dividing the two equations, we get
=
, so
.
Thus
is a
right triangle, meaning that
. Now by the Pythagorean Theorem in
,
.
The problem requires the square of the product of the third side lengths of each triangle, which is
. By substitution, we see that
=
. We also know
.
Since we want
, multiplying both sides by
gets us
. Now squaring gives
.
[Note: there is a mismatch of variables near the beginning that someone can fix: xw/2 is the area of the small triangle, which is actually the 30-60-90.]
Video Solution
~IceMatrix
See Also
| 2019 AMC 10B (Problems • Answer Key • Resources) | ||
| Preceded by Problem 14 |
Followed by Problem 16 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America.