2023 AIME I Problems/Problem 12: Difference between revisions
R00tsofunity (talk | contribs) No edit summary |
No edit summary |
||
| Line 4: | Line 4: | ||
==Solution== | ==Solution== | ||
Miquel point and law of cosines, answer should be 75 | Miquel point and law of cosines, answer should be 75 | ||
==Solution== | |||
Denote <math>\theta = \angle AEP</math>. | |||
In <math>AFPE</math>, we have <math>\overrightarrow{AF} + \overrightarrow{FP} + \overrightarrow{PE} + \overrightarrow{EA} = 0</math>. | |||
Thus, | |||
<cmath> | |||
\[ | |||
AF + FP e^{i \theta} + PE e^{i \left( \theta + 60^\circ \right)} | |||
+ EA e^{- i 120^\circ} = 0. | |||
\] | |||
</cmath> | |||
Taking the real and imaginary parts, we get | |||
<cmath> | |||
\begin{align*} | |||
AF + FP \cos \theta + PE \cos \left( \theta + 60^\circ \right) + EA \cos \left( - 120^\circ \right) & = 0 \hspace{1cm} (1) \\ | |||
FP \sin \theta + PE \sin \left( \theta + 60^\circ \right) + EA \sin \left( - 120^\circ \right) & = 0 \hspace{1cm} (2) | |||
\end{align*} | |||
</cmath> | |||
In <math>BDPF</math>, analogous to the analysis of <math>AFPE</math> above, we get | |||
<cmath> | |||
\begin{align*} | |||
BD + DP \cos \theta + PF \cos \left( \theta + 60^\circ \right) + FB \cos \left( - 120^\circ \right) & = 0 \hspace{1cm} (3) \\ | |||
DP \sin \theta + PF \sin \left( \theta + 60^\circ \right) + FB \sin \left( - 120^\circ \right) & = 0 \hspace{1cm} (4) | |||
\end{align*} | |||
</cmath> | |||
Taking <math>(1) \cdot \sin \left( \theta + 60^\circ \right) - (2) \cdot \cos \left( \theta + 60^\circ \right)</math>, we get | |||
<cmath> | |||
\[ | |||
AF \sin \left( \theta + 60^\circ \right) | |||
+ \frac{\sqrt{3}}{2} FP - EA \sin \theta = 0 . \hspace{1cm} (5) | |||
\] | |||
</cmath> | |||
Taking <math>(3) \cdot \sin \theta - (4) \cdot \cos \theta</math>, we get | |||
<cmath> | |||
\[ | |||
BD \sin \theta - \frac{\sqrt{3}}{2} FP + FB \sin \left( \theta + 120^\circ \right) . \hspace{1cm} (6) | |||
\] | |||
</cmath> | |||
Taking <math>(5) + (6)</math>, we get | |||
<cmath> | |||
\[ | |||
AF \sin \left( \theta + 60^\circ \right) | |||
- EA \sin \theta | |||
+ BD \sin \theta + FB \sin \left( \theta + 120^\circ \right) . | |||
\] | |||
</cmath> | |||
Therefore, | |||
<cmath> | |||
\begin{align*} | |||
\tan \theta & = \frac{\frac{\sqrt{3}}{2} \left( AF + FB \right)} | |||
{\frac{FB}{2} + EA - \frac{AF}{2} - BD} \\ | |||
& = 5 \sqrt{3} . | |||
\end{align*} | |||
</cmath> | |||
Therefore, <math>\tan^2 \theta = \boxed{\textbf{(075) }}</math>. | |||
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com) | |||
==See also== | ==See also== | ||
Revision as of 13:49, 8 February 2023
Problem 12
Let
be an equilateral triangle with side length
. Points
,
, and
lie on sides
,
, and
, respectively, such that
,
, and
. A unique point
inside
has the property that
Find
.
Solution
Miquel point and law of cosines, answer should be 75
Solution
Denote
.
In
, we have
.
Thus,
Taking the real and imaginary parts, we get
In
, analogous to the analysis of
above, we get
Taking
, we get
Taking
, we get
Taking
, we get
Therefore,
Therefore,
.
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
See also
| 2023 AIME I (Problems • Answer Key • Resources) | ||
| Preceded by Problem 11 |
Followed by Problem 13 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America.