2022 AMC 10B Problems/Problem 2: Difference between revisions
Ehuang0531 (talk | contribs) restored original not-to-scale figure in problem statement and moved to-scale figure to solution; ce |
|||
| Line 3: | Line 3: | ||
In rhombus <math>ABCD</math>, point <math>P</math> lies on segment <math>\overline{AD}</math> so that <math>\overline{BP}</math> <math>\perp</math> <math>\overline{AD}</math>, <math>AP = 3</math>, and <math>PD = 2</math>. What is the area of <math>ABCD</math>? (Note: The figure is not drawn to scale.) | In rhombus <math>ABCD</math>, point <math>P</math> lies on segment <math>\overline{AD}</math> so that <math>\overline{BP}</math> <math>\perp</math> <math>\overline{AD}</math>, <math>AP = 3</math>, and <math>PD = 2</math>. What is the area of <math>ABCD</math>? (Note: The figure is not drawn to scale.) | ||
( | <asy> | ||
import olympiad; | |||
size(180); | |||
real r = 3, s = 5, t = sqrt(r*r+s*s); | |||
defaultpen(linewidth(0.6) + fontsize(10)); | |||
pair A = (0,0), B = (r,s), C = (r+t,s), D = (t,0), P = (r,0); | |||
draw(A--B--C--D--A^^B--P^^rightanglemark(B,P,D)); | |||
label("$A$",A,SW); | |||
label("$B$", B, NW); | |||
label("$C$",C,NE); | |||
label("$D$",D,SE); | |||
label("$P$",P,S); | |||
</asy> | |||
<math>\textbf{(A) }3\sqrt{5}\qquad\textbf{(B) }10\qquad\textbf{(C) }6\sqrt{5}\qquad\textbf{(D) }20\qquad\textbf{(E) }25</math> | |||
==Solution== | |||
<asy> | <asy> | ||
pair A = (0,0); | pair A = (0,0); | ||
| Line 20: | Line 37: | ||
</asy> | </asy> | ||
(Figure redrawn to scale.) | |||
<math>AD = AP + PD = 3 + 2 =5</math> | <math>AD = AP + PD = 3 + 2 = 5.</math> | ||
<math>ABCD</math> is a rhombus, so <math> | <math>ABCD</math> is a rhombus, so <math>AB = AP = 5</math>. | ||
<math>\bigtriangleup APB</math> is a 3-4-5 right triangle, so <math>BP = 4</math>. | <math>\bigtriangleup APB</math> is a 3-4-5 right triangle, so <math>BP = 4</math>. | ||
The area of the rhombus <math>= bh = (AD)(BP) = 5 * 4 = \boxed{\textbf{(D) }20}</math>. | |||
~richiedelgado | ~richiedelgado | ||
Revision as of 17:06, 17 November 2022
Problem
In rhombus
, point
lies on segment
so that
,
, and
. What is the area of
? (Note: The figure is not drawn to scale.)
Solution
(Figure redrawn to scale.)
is a rhombus, so
.
is a 3-4-5 right triangle, so
.
The area of the rhombus
.
~richiedelgado