Art of Problem Solving

Proportion/Introductory: Difference between revisions

Temperal (talk | contribs)
includeonly
Temperal (talk | contribs)
noinclude
Line 1: Line 1:
<noinclude>
==Problem==
==Problem==
<includeonly>
</noinclude>
Suppose <math>\frac{1}{20}</math> is either '''x''' or '''y''' in the following system:
Suppose <math>\frac{1}{20}</math> is either '''x''' or '''y''' in the following system:
<cmath>\begin{cases}
<cmath>\begin{cases}
Line 7: Line 8:
\end{cases} </cmath>
\end{cases} </cmath>
Find the possible values of '''k'''.
Find the possible values of '''k'''.
</includeonly>
<noinclude>
==Solution==
==Solution==
If <math>x=\frac{1}{20}</math>, then <br />
If <math>x=\frac{1}{20}</math>, then <br />
Line 24: Line 25:
:<math>k=\pm 20</math><br />
:<math>k=\pm 20</math><br />
Thus, the possible values of '''k''' are <math>(20,-20)</math>.
Thus, the possible values of '''k''' are <math>(20,-20)</math>.
</noinclude>

Revision as of 16:51, 9 October 2007

Problem

Suppose $\frac{1}{20}$ is either x or y in the following system: \[\begin{cases} xy=\frac{1}{k}\\ x=ky \end{cases}\] Find the possible values of k.

Solution

If $x=\frac{1}{20}$, then

$\frac{1}{20}=ky$ and
$\frac{y}{20}=\frac{1}{k}$

Solving gets us:

$y=\frac{20}{k}$
$\frac{1}{20}=k\frac{20}{k}$
$\frac{1}{20}=20$

Thus, there is no solution when $x=\frac{1}{20}$
If $y=\frac{1}{20}$, then

$\frac{x}{20}=\frac{1}{k} \Longrightarrow xk=20$
$x=\frac{k}{20}$
$\left(\frac{k}{20}\right)\cdot k=20$
$k^2=400$
$k=\pm 20$

Thus, the possible values of k are $(20,-20)$.