Art of Problem Solving

User:Temperal/The Problem Solver's Resource8: Difference between revisions

Xpmath (talk | contribs)
Xpmath (talk | contribs)
Line 11: Line 11:
==Useful facts and Formulas==
==Useful facts and Formulas==
All quadratic resiues are 0 or 1<math>\pmod{4}</math>and  0,1, or 4 <math>\pmod{8}</math>.
All quadratic resiues are 0 or 1<math>\pmod{4}</math>and  0,1, or 4 <math>\pmod{8}</math>.
Fermat-Euler Identitity-If <math>gcd(a,m)=1</math>, then <math>a^{\phi{m}}\equiv1\pmod{m}</math>, where <math>\phi{m}</math> is the number of relitvely prime  numbers lower than <math>m</math>.
Fermat-Euler Identitity-If <math>gcd(a,m)=1</math>, then <math>a^{\phi{m}}\equiv1\pmod{m}</math>, where <math>\phi{m}</math> is the number of relitvely prime  numbers lower than <math>m</math>.



Revision as of 21:04, 5 October 2007



The Problem Solver's Resource
Introduction Other Tips and Tricks Methods of Proof You are currently viewing page 8.

Intermediate Number Theory

These are more complex number theory theorems that may turn up on the USAMO or Pre-Olympiad tests. This will also cover diverging and converging series, and other such calculus-related topics.

Useful facts and Formulas

All quadratic resiues are 0 or 1$\pmod{4}$and 0,1, or 4 $\pmod{8}$.

Fermat-Euler Identitity-If $gcd(a,m)=1$, then $a^{\phi{m}}\equiv1\pmod{m}$, where $\phi{m}$ is the number of relitvely prime numbers lower than $m$.


Back to page 7 | Continue to page 9