Art of Problem Solving

User:Temperal/The Problem Solver's Resource2: Difference between revisions

Temperal (talk | contribs)
Temperal (talk | contribs)
Line 14: Line 14:




===Cauchy-Schwarz inequality===
===Cauchy-Schwarz Inequality===


For any real numbers <math>a_1,a_2,...,a_n</math> and <math>b_1,b_2,...,b_n</math>, the following holds:
For any real numbers <math>a_1,a_2,...,a_n</math> and <math>b_1,b_2,...,b_n</math>, the following holds:
Line 20: Line 20:
<math>(\sum a_i^2)(\sum b_i^2) \ge (\sum a_ib_i)^2</math>
<math>(\sum a_i^2)(\sum b_i^2) \ge (\sum a_ib_i)^2</math>


====Cauchy-Schwarz variation====
====Cauchy-Schwarz Variation====


For any real numbers <math>a_1,a_2,...,a_n</math> and positive real numbers <math>b_1,b_2,...,b_n</math>, the following holds:
For any real numbers <math>a_1,a_2,...,a_n</math> and positive real numbers <math>b_1,b_2,...,b_n</math>, the following holds:

Revision as of 14:54, 29 September 2007



The Problem Solver's Resource
Introduction Other Tips and Tricks Methods of Proof You are currently viewing page 2.

Simple Number Theory

This is a collection of essential AIME-level number theory theorems and other tidbits.

Trivial Inequality

For any real $x$, $x^2\ge 0$, with equality iff $x=0$.

Arithmetic Mean/Geometric Mean Inequality

For any set of real numbers $S$, $\frac{S_1+S_2+S_3....+S_{k-1}+S_k}{k}\ge \sqrt[k]{S_1\cdot S_2 \cdot S_3....\cdot S_{k-1}\cdot S_k}$ with equality iff $S_1=S_2=S_3...=S_{k-1}=S_k$.


Cauchy-Schwarz Inequality

For any real numbers $a_1,a_2,...,a_n$ and $b_1,b_2,...,b_n$, the following holds:

$(\sum a_i^2)(\sum b_i^2) \ge (\sum a_ib_i)^2$

Cauchy-Schwarz Variation

For any real numbers $a_1,a_2,...,a_n$ and positive real numbers $b_1,b_2,...,b_n$, the following holds:

$\sum\left({{a_i^2}\over{b_i}}\right) \ge {{\sum a_i^2}\over{\sum b_i}}$.


Back to page 1 | Continue to page 3