2022 AIME II Problems/Problem 4: Difference between revisions
No edit summary |
|||
| Line 3: | Line 3: | ||
There is a positive real number <math>x</math> not equal to either <math>\tfrac{1}{20}</math> or <math>\tfrac{1}{2}</math> such that<cmath>\log_{20x} (22x)=\log_{2x} (202x).</cmath>The value <math>\log_{20x} (22x)</math> can be written as <math>\log_{10} (\tfrac{m}{n})</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>. | There is a positive real number <math>x</math> not equal to either <math>\tfrac{1}{20}</math> or <math>\tfrac{1}{2}</math> such that<cmath>\log_{20x} (22x)=\log_{2x} (202x).</cmath>The value <math>\log_{20x} (22x)</math> can be written as <math>\log_{10} (\tfrac{m}{n})</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>. | ||
==Solution== | ==Solution 1== | ||
We could assume a variable <math>v</math> which equals to both <math>\log_{20x} (22x)</math> and <math>\log_{2x} (202x)</math>. | We could assume a variable <math>v</math> which equals to both <math>\log_{20x} (22x)</math> and <math>\log_{2x} (202x)</math>. | ||
| Line 18: | Line 18: | ||
~DSAERF-CALMIT (https://binaryphi.site) | ~DSAERF-CALMIT (https://binaryphi.site) | ||
==Solution 2== | |||
We have | |||
\begin{align*} | |||
\log_{20x} (22x) | |||
& = \frac{\log_k 22x}{\log_k 20x} \\ | |||
& = \frac{\log_k x + \log_k 22}{\log_k x + \log_k 20} . | |||
\end{align*} | |||
We have | |||
\begin{align*} | |||
\log_{2x} (202x) | |||
& = \frac{\log_k 202x}{\log_k 2x} \\ | |||
& = \frac{\log_k x + \log_k 202 }{\log_k x + \log_k 2} . | |||
\end{align*} | |||
Because <math>\log_{20x} (22x)=\log_{2x} (202x)</math>, we get | |||
\[ | |||
\frac{\log_k x + \log_k 22}{\log_k x + \log_k 20} | |||
= \frac{\log_k x + \log_k 202 }{\log_k x + \log_k 2} . | |||
\] | |||
We denote this common value as <math>\lambda</math>. | |||
By solving the equality <math>\frac{\log_k x + \log_k 22}{\log_k x + \log_k 20} = \lambda</math>, we get <math>\log_k x = \frac{\log_k 22 - \lambda \log_k 20}{\lambda - 1}</math>. | |||
By solving the equality <math>\frac{\log_k x + \log_k 202 }{\log_k x + \log_k 2} = \lambda</math>, we get <math>\log_k x = \frac{\log_k 202 - \lambda \log_k 2}{\lambda - 1}</math>. | |||
By equating these two equations, we get | |||
<cmath> | |||
\[ | |||
\frac{\log_k 22 - \lambda \log_k 20}{\lambda - 1} | |||
= \frac{\log_k 202 - \lambda \log_k 2}{\lambda - 1} . | |||
\] | |||
</cmath> | |||
Therefore, | |||
<cmath> | |||
\begin{align*} | |||
\log_{20x} (22x) | |||
& = \lambda \\ | |||
& = \frac{\log_k 22 - \log_k 202}{\log_k 20 - \log_k 2} \\ | |||
& = \frac{\log_k \frac{11}{101}}{\log_k 10} \\ | |||
& = \log_{10} \frac{11}{101} . | |||
\end{align*} | |||
</cmath> | |||
Therefore, the answer is <math>11 + 101 = \boxed{\textbf{(112) }}</math>. | |||
~Steven Chen (www.professorchenedu.com) | |||
==See Also== | ==See Also== | ||
{{AIME box|year=2022|n=II|num-b=3|num-a=5}} | {{AIME box|year=2022|n=II|num-b=3|num-a=5}} | ||
{{MAA Notice}} | {{MAA Notice}} | ||
Revision as of 13:31, 18 February 2022
Problem
There is a positive real number
not equal to either
or
such that
The value
can be written as
, where
and
are relatively prime positive integers. Find
.
Solution 1
We could assume a variable
which equals to both
and
.
So that
and
Express
as:
Substitute
to
:
Thus,
, where
and
.
Therefore,
.
~DSAERF-CALMIT (https://binaryphi.site)
Solution 2
We have \begin{align*} \log_{20x} (22x) & = \frac{\log_k 22x}{\log_k 20x} \\ & = \frac{\log_k x + \log_k 22}{\log_k x + \log_k 20} . \end{align*}
We have \begin{align*} \log_{2x} (202x) & = \frac{\log_k 202x}{\log_k 2x} \\ & = \frac{\log_k x + \log_k 202 }{\log_k x + \log_k 2} . \end{align*}
Because
, we get
\[
\frac{\log_k x + \log_k 22}{\log_k x + \log_k 20}
= \frac{\log_k x + \log_k 202 }{\log_k x + \log_k 2} .
\]
We denote this common value as
.
By solving the equality
, we get
.
By solving the equality
, we get
.
By equating these two equations, we get
Therefore,
Therefore, the answer is
.
~Steven Chen (www.professorchenedu.com)
See Also
| 2022 AIME II (Problems • Answer Key • Resources) | ||
| Preceded by Problem 3 |
Followed by Problem 5 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America.