2022 AIME I Problems/Problem 4: Difference between revisions
No edit summary |
MRENTHUSIASM (talk | contribs) Added in detail explanation. |
||
| Line 1: | Line 1: | ||
== | ==Problem== | ||
Let <math>w = \dfrac{\sqrt{3} + i}{2}</math> and <math>z = \dfrac{-1 + i\sqrt{3}}{2},</math> where <math>i = \sqrt{-1}.</math> Find the number of ordered pairs <math>(r,s)</math> of positive integers not exceeding <math>100</math> that satisfy the equation <math>i \cdot w^r = z^s.</math> | |||
==Solution== | |||
We rewrite <math>w</math> and <math>z</math> in polar form: | |||
<cmath>\begin{align*} | |||
w &= e^{i\cdot\frac{\pi}{6}}, \\ | |||
z &= e^{i\cdot\frac{2\pi}{3}}. | |||
\end{align*}</cmath> | |||
The equation <math>i \cdot w^r = z^s</math> becomes | |||
<cmath>\begin{align*} | |||
e^{i\cdot\frac{\pi}{2}} \cdot \left(e^{i\cdot\frac{\pi}{6}}\right)^r &= \left(e^{i\cdot\frac{2\pi}{3}}\right)^s \\ | |||
e^{i\left(\frac{\pi}{2}+\frac{\pi}{6}r\right)} &= e^{i\left(\frac{2\pi}{3}s\right)}. | |||
\end{align*}</cmath> | |||
Note that <math>\frac{\pi}{2}+\frac{\pi}{6}r=\frac{2\pi}{3}s+2\pi k</math> for some integer <math>k,</math> or | |||
~bluesoul | ~MRENTHUSIASM ~bluesoul | ||
==See Also== | |||
{{AIME box|year=2022|n=I|num-b=3|num-a=5}} | |||
{{MAA Notice}} | |||
Revision as of 16:39, 17 February 2022
Problem
Let
and
where
Find the number of ordered pairs
of positive integers not exceeding
that satisfy the equation
Solution
We rewrite
and
in polar form:
The equation
becomes
Note that
for some integer
or
~MRENTHUSIASM ~bluesoul
See Also
| 2022 AIME I (Problems • Answer Key • Resources) | ||
| Preceded by Problem 3 |
Followed by Problem 5 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America.