De Moivre's Theorem: Difference between revisions
No edit summary |
No edit summary |
||
| Line 22: | Line 22: | ||
<cmath>\begin{align*} | <cmath>\begin{align*} | ||
(\operatorname{cis} x)^{n} &=(\operatorname{cis} x)^{-m} \\ | (\operatorname{cis} x)^{n} &=(\operatorname{cis} x)^{-m} & \\ | ||
&=\frac{1}{(\operatorname{cis} x)^{m}} \\ | &=\frac{1}{(\operatorname{cis} x)^{m}} & \\ | ||
&=\frac{1}{\operatorname{cis}(m x)} \\ | &=\frac{1}{\operatorname{cis}(m x)} & \\ | ||
&=\cos (m x)-i \sin (m x) | &=\cos (m x)-i \sin (m x) & \text { rationalization of the denominator } \\ | ||
&=\operatorname{cis}(-m x) \\ | &=\operatorname{cis}(-m x) & \\ | ||
&=\operatorname{cis}(n x) | &=\operatorname{cis}(n x) & | ||
\end{align*}</cmath> | \end{align*}</cmath> | ||
Revision as of 02:06, 6 February 2022
DeMoivre's Theorem is a very useful theorem in the mathematical fields of complex numbers. It allows complex numbers in polar form to be easily raised to certain powers. It states that for
and
,
.
Proof
This is one proof of De Moivre's theorem by induction.
- If
, for
, the case is obviously true.
- Assume true for the case
. Now, the case of
:
- Therefore, the result is true for all positive integers
.
- If
, the formula holds true because
. Since
, the equation holds true.
- If
, one must consider
when
is a positive integer.
And thus, the formula proves true for all integral values of
.
Note that from the functional equation
where
, we see that
behaves like an exponential function. Indeed, Euler's identity states that
. This extends De Moivre's theorem to all
.