2021 Fall AMC 12B Problems/Problem 10: Difference between revisions
MRENTHUSIASM (talk | contribs) →Solution 1 (Quick Look for Symmetry): About to combine solutions. |
MRENTHUSIASM (talk | contribs) No edit summary |
||
| Line 6: | Line 6: | ||
<math>\textbf{(A)} \: 100 \qquad\textbf{(B)} \: 150 \qquad\textbf{(C)} \: 330 \qquad\textbf{(D)} \: 360 \qquad\textbf{(E)} \: 380</math> | <math>\textbf{(A)} \: 100 \qquad\textbf{(B)} \: 150 \qquad\textbf{(C)} \: 330 \qquad\textbf{(D)} \: 360 \qquad\textbf{(E)} \: 380</math> | ||
== Solution | == Solution == | ||
Denote <math>A = \left( \cos 40^\circ , \sin 40^\circ \right)</math>, | Denote <math>A = \left( \cos 40^\circ , \sin 40^\circ \right)</math>, | ||
<math>B = \left( \cos 60^\circ , \sin 60^\circ \right)</math>, | <math>B = \left( \cos 60^\circ , \sin 60^\circ \right)</math>, | ||
| Line 25: | Line 25: | ||
Therefore, the answer is <math>\boxed{\textbf{(E) }380}</math>. | Therefore, the answer is <math>\boxed{\textbf{(E) }380}</math>. | ||
~Steven Chen (www.professorchenedu.com) | ~Steven Chen (www.professorchenedu.com) ~Wilhelm Z ~MRENTHUSIASM | ||
{{AMC12 box|year=2021 Fall|ab=B|num-a=11|num-b=9}} | {{AMC12 box|year=2021 Fall|ab=B|num-a=11|num-b=9}} | ||
{{MAA Notice}} | {{MAA Notice}} | ||
Revision as of 01:18, 28 January 2022
Problem
What is the sum of all possible values of
between
and
such that the triangle in the coordinate plane whose vertices are
is isosceles?
Solution
Denote
,
,
and
.
Case 1:
.
We have
or
.
Case 2:
.
We have
.
Case 3:
.
We have
.
Therefore, the answer is
.
~Steven Chen (www.professorchenedu.com) ~Wilhelm Z ~MRENTHUSIASM
| 2021 Fall AMC 12B (Problems • Answer Key • Resources) | |
| Preceded by Problem 9 |
Followed by Problem 11 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America.