2014 AIME II Problems/Problem 11: Difference between revisions
| Line 49: | Line 49: | ||
Now we just have to calculate <math>ED</math>. Using the Law of Sines, or perhaps using altitude <math>\overline R\overline O</math>, we get <math>ED = \frac{\sqrt{3}+1}{2}</math>. <math>CA=RA</math>, which equals <math>ED - x</math> | Now we just have to calculate <math>ED</math>. Using the Law of Sines, or perhaps using altitude <math>\overline R\overline O</math>, we get <math>ED = \frac{\sqrt{3}+1}{2}</math>. <math>CA=RA</math>, which equals <math>ED - x</math> | ||
Using Law of Sine in <math>\triangle RED</math>, we find <math>RE</math> = <math>\frac{\sqrt{6}}{2}</math>. | |||
We got the three sides. Now | We got the three sides of <math>\triangle AER</math>. Now using the Law of Cosines on <math>\angle AER</math>. There we can equate <math>x</math> and solve for it. We got <math>AE=x=\frac{\sqrt{3}-1}{4\sqrt{3}+2}</math>. Then rationalize the denominator, we get <math>AE = \frac{7 - \sqrt{27}}{22}</math>. | ||
== See also == | == See also == | ||
Revision as of 21:17, 25 November 2021
Problem 11
In
,
and
.
. Let
be the midpoint of segment
. Point
lies on side
such that
. Extend segment
through
to point
such that
. Then
, where
and
are relatively prime positive integers, and
is a positive integer. Find
.
Solution 1
Let
be the foot of the perpendicular from
to
, so
. Since triangle
is isosceles,
is the midpoint of
, and
. Thus,
is a parallelogram and
. We can then use coordinates. Let
be the foot of altitude
and set
as the origin. Now we notice special right triangles! In particular,
and
, so
,
, and
midpoint
and the slope of
, so the slope of
Instead of finding the equation of the line, we use the definition of slope: for every
to the left, we go
up. Thus,
, and
, so the answer is
.
Solution 2
Let
Meanwhile, because
is similar to
(angle, side, and side-
and
ratio),
must be 2
. Now, notice that
is
, because of the parallel segments
and
.
Now we just have to calculate
. Using the Law of Sines, or perhaps using altitude
, we get
.
, which equals
Using Law of Sine in
, we find
=
.
We got the three sides of
. Now using the Law of Cosines on
. There we can equate
and solve for it. We got
. Then rationalize the denominator, we get
.
See also
| 2014 AIME II (Problems • Answer Key • Resources) | ||
| Preceded by Problem 10 |
Followed by Problem 12 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America.