Art of Problem Solving

2021 Fall AMC 10A Problems/Problem 1: Difference between revisions

Leo.euler (talk | contribs)
Created page with "What is the value of <math>\frac{(2112-2021)^2}{169}</math>? <math>\textbf{(A) } 7 \qquad\textbf{(B) } 21 \qquad\textbf{(C) } 49 \qquad\textbf{(D) } 64 \qquad\textbf{(E) } 91..."
 
MRENTHUSIASM (talk | contribs)
No edit summary
Line 1: Line 1:
== Problem ==
What is the value of <math>\frac{(2112-2021)^2}{169}</math>?
What is the value of <math>\frac{(2112-2021)^2}{169}</math>?


<math>\textbf{(A) } 7 \qquad\textbf{(B) } 21 \qquad\textbf{(C) } 49 \qquad\textbf{(D) } 64 \qquad\textbf{(E) } 91</math>
<math>\textbf{(A) } 7 \qquad\textbf{(B) } 21 \qquad\textbf{(C) } 49 \qquad\textbf{(D) } 64 \qquad\textbf{(E) } 91</math>
== Solution ==
We have <cmath>\frac{(2112-2021)^2}{169}=\frac{91^2}{169}=\frac{91^2}{13^2}=\left(\frac{91}{13}\right)^2=7^2=\boxed{\textbf{(C) } 49}.</cmath>
~MRENTHUSIASM

Revision as of 17:36, 22 November 2021

Problem

What is the value of $\frac{(2112-2021)^2}{169}$?

$\textbf{(A) } 7 \qquad\textbf{(B) } 21 \qquad\textbf{(C) } 49 \qquad\textbf{(D) } 64 \qquad\textbf{(E) } 91$

Solution

We have \[\frac{(2112-2021)^2}{169}=\frac{91^2}{169}=\frac{91^2}{13^2}=\left(\frac{91}{13}\right)^2=7^2=\boxed{\textbf{(C) } 49}.\] ~MRENTHUSIASM