Art of Problem Solving

2021 AIME II Problems/Problem 12: Difference between revisions

My aops lessons (talk | contribs)
My aops lessons (talk | contribs)
No edit summary
Line 3: Line 3:


==Solution==
==Solution==
We can't have a solution without a problem.
Since we are asked to find <math>\tan \theta</math>, we can find <math>\sin \theta</math> and <math>\cos \theta</math> separately and then use those values to find <math>\tan \theta</math>. Let us first draw a diagram of this quadrilateral.
 
[asy]
unitsize(4cm);
pair A,B,C,D,X;
A = (0,0);
B = (1,0);
C = (1.25,-1);
D = (-0.75,-0.75);
draw(A--B--C--D--cycle,black+1bp);
X = intersectionpoint(A--C,B--D);
draw(A--C);
draw(B--D);
label("<math>A</math>",A,NW);
abel("<math>B</math>",B,NE);
label("<math>C</math>",C,SE);
label("<math>D</math>",D,SW);
dot(X);
label("<math>X</math>",X,S);
label("<math>5</math>",(A+B)/2,N)
label("<math>6</math>",(B+C)/2,E);
label("<math>9</math>",(C+D)/2,S);
label("<math>7</math>",(D+A)/2,W);
label("<math>\theta</math>",X,2.5E);
label("<math>a</math>",(A+X)/2,NE);
label("<math>b</math>",(B+X)/2,NW);
label("<math>c</math>",(C+X)/2,SW);
label("<math>d</math>",(D+X)/2,SE);
[/asy]
 
~ my_aops_lessons
 


==See also==
==See also==
{{AIME box|year=2021|n=II|num-b=11|num-a=13}}
{{AIME box|year=2021|n=II|num-b=11|num-a=13}}
{{MAA Notice}}
{{MAA Notice}}

Revision as of 15:51, 22 March 2021

Problem

A convex quadrilateral has area $30$ and side lengths $5, 6, 9,$ and $7,$ in that order. Denote by $\theta$ the measure of the acute angle formed by the diagonals of the quadrilateral. Then $\tan \theta$ can be written in the form $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$.

Solution

Since we are asked to find $\tan \theta$, we can find $\sin \theta$ and $\cos \theta$ separately and then use those values to find $\tan \theta$. Let us first draw a diagram of this quadrilateral.

[asy] unitsize(4cm); pair A,B,C,D,X; A = (0,0); B = (1,0); C = (1.25,-1); D = (-0.75,-0.75); draw(A--B--C--D--cycle,black+1bp); X = intersectionpoint(A--C,B--D); draw(A--C); draw(B--D); label("$A$",A,NW); abel("$B$",B,NE); label("$C$",C,SE); label("$D$",D,SW); dot(X); label("$X$",X,S); label("$5$",(A+B)/2,N) label("$6$",(B+C)/2,E); label("$9$",(C+D)/2,S); label("$7$",(D+A)/2,W); label("$\theta$",X,2.5E); label("$a$",(A+X)/2,NE); label("$b$",(B+X)/2,NW); label("$c$",(C+X)/2,SW); label("$d$",(D+X)/2,SE); [/asy]

~ my_aops_lessons


See also

2021 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America.