Art of Problem Solving

2007 Cyprus MO/Lyceum/Problem 1: Difference between revisions

I_like_pie (talk | contribs)
No edit summary
 
m Solution: so -> png
Line 5: Line 5:


==Solution==
==Solution==
<math>x^2+x-2xy+y^2-y=x^2-2xy+y^2+x-y=(x-y)^2+x-y=(1)^2+1=2\Rightarrow\mathrm{ A}</math>
<math>x^2+x-2xy+y^2-y=x^2-2xy+y^2+x-y=(x-y)^2+x-y=(1)^2+1=2\Longrightarrow\mathrm{ A}</math>


==See also==
==See also==

Revision as of 14:56, 6 May 2007

Problem

If $x-y=1$, then the value of the expression $K=x^2+x-2xy+y^2-y$ is

$\mathrm{(A) \ } 2\qquad \mathrm{(B) \ } -2\qquad \mathrm{(C) \ } 1\qquad \mathrm{(D) \ } -1\qquad \mathrm{(E) \ } 0$

Solution

$x^2+x-2xy+y^2-y=x^2-2xy+y^2+x-y=(x-y)^2+x-y=(1)^2+1=2\Longrightarrow\mathrm{ A}$

See also