2007 USAMO Problems/Problem 5: Difference between revisions
m wik |
Roadnottaken (talk | contribs) I removed the "Solution 1" heading from the middle of the solution.~~~~ |
||
| Line 11: | Line 11: | ||
Now we assume the result holds for <math>\displaystyle{n}</math>. Note that <math>\displaystyle{a_{n}}</math> satisfies the [[recursion]] | Now we assume the result holds for <math>\displaystyle{n}</math>. Note that <math>\displaystyle{a_{n}}</math> satisfies the [[recursion]] | ||
<div style="text-align:center;"><math>\displaystyle{a_{n+1}= (a_{n}-1)^{7}+1} = a_{n}\left(a_{n}^{6}-7(a_{n}-1)(a_{n}^{2}-a_{n}+1)^{2}\right)</math></div> | <div style="text-align:center;"><math>\displaystyle{a_{n+1}= (a_{n}-1)^{7}+1} = a_{n}\left(a_{n}^{6}-7(a_{n}-1)(a_{n}^{2}-a_{n}+1)^{2}\right)</math></div> | ||
Revision as of 17:19, 2 May 2007
Problem
Prove that for every nonnegative integer
, the number
is the product of at least
(not necessarily distinct) primes.
Solution
We prove the result by induction.
Let
be
. The result holds for
because
is the product of
primes.
Now we assume the result holds for
. Note that
satisfies the recursion
Since
is an odd power of
,
is a perfect square. Therefore
is a difference of squares and thus composite, i.e. it is divisible by
primes. By assumption,
is divisible by
primes. Thus
is divisible by
primes as desired.
See also
| 2007 USAMO (Problems • Resources) | ||
| Preceded by Problem 4 |
Followed by Problem 6 | |
| 1 • 2 • 3 • 4 • 5 • 6 | ||
| All USAMO Problems and Solutions | ||