2021 AMC 10B Problems/Problem 2: Difference between revisions
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
==Problem== | |||
What is the value of <cmath>\sqrt{(3-2\sqrt{ | What is the value of <cmath>\sqrt{(3-2\sqrt{3})^2}+\sqrt{(3+2\sqrt{3})^2}?</cmath> | ||
<math>\textbf{(A)} ~0 \qquad\textbf{(B)} ~4\sqrt{3}-6 \qquad\textbf{(C)} ~6 \qquad\textbf{(D)} ~4\sqrt{3} \qquad\textbf{(E)} ~4\sqrt{3}+6</math> | <math>\textbf{(A)} ~0 \qquad\textbf{(B)} ~4\sqrt{3}-6 \qquad\textbf{(C)} ~6 \qquad\textbf{(D)} ~4\sqrt{3} \qquad\textbf{(E)} ~4\sqrt{3}+6</math> | ||
==Solution== | |||
Note that the square root of a squared number is the absolute value of the number. | |||
So the first term equals <math>2\sqrt{3}-3</math> and the second term is <math>3+2\sqrt3</math> | |||
Summed up you get <math>\boxed{\textbf{(D)} ~4\sqrt{3}}</math>~bjc | |||
Revision as of 17:29, 11 February 2021
Problem
What is the value of
Solution
Note that the square root of a squared number is the absolute value of the number.
So the first term equals
and the second term is
Summed up you get
~bjc