2012 JBMO Problems/Problem 2: Difference between revisions
Created page with "== Section 2== Let the circles <math>k_1</math> and <math>k_2</math> intersect at two points <math>A</math> and <math>B</math>, and let <math>t</math> be a common tangent of..." |
|||
| Line 3: | Line 3: | ||
== Solution == | == Solution == | ||
<asy> | |||
size(15cm,0); | |||
draw((0,0)--(0,2)--(4,2)--(4,-3)--(0,0)); | |||
draw((-1,2)--(9,2)); | |||
draw((0,0)--(2,2)); | |||
draw((2,2)--(1,1)); | |||
draw(circle((0,1),1)); | |||
draw(circle((4,-3),5)); | |||
dot((0,0)); | |||
dot((0,2)); | |||
dot((2,2)); | |||
dot((4,2)); | |||
dot((4,-3)); | |||
dot((1,1)); | |||
dot((0,1)); | |||
label("A",(0,0),NW); | |||
label("B",(1,1),NW); | |||
label("M",(0,2),N); | |||
label("N",(4,2),N); | |||
label("$O_1$",(0,1),NW); | |||
label("$O_2$",(4,-3),NE); | |||
label("$k_1$",(-0.7,1.7),NW); | |||
label("$k_2$",(7.6,0.46),NE); | |||
label("$t$",(7.5,2),N); | |||
label("P",(2,2),N); | |||
</asy> | |||
Let <math>O_1</math> and <math>O-2</math> be the centers of circles <math>k_1</math> and <math>k_2</math> respectively. | |||
Revision as of 21:16, 22 December 2020
Section 2
Let the circles
and
intersect at two points
and
, and let
be a common tangent of
and
that touches
and
at
and
respectively. If
and
, evaluate the angle
.
Solution
Let
and
be the centers of circles
and
respectively.