Art of Problem Solving

1997 AIME Problems/Problem 14: Difference between revisions

Line 8: Line 8:


If <math>\displaystyle \theta=2\pi ik</math>, where k is any constant, the equation reduces to:
If <math>\displaystyle \theta=2\pi ik</math>, where k is any constant, the equation reduces to:
<math>
 
e^{2\pi ik}=\cos(2\pi k)+i\sin(2\pi k)\\
<math>\displaystyle e^{2\pi ik}=\cos(2\pi k)+i\sin(2\pi k)</math>
=1+0i\\
 
=1+0\\
<math>\displaystyle =1+0i</math>
=1\\
 
z^{1997}-1=0\\
<math>\displaystyle =1+0</math>
z^{1997}=1\\
 
z^{1997}=e^{2\pi ik}\\
<math>\displaystyle =1</math>
z=e^{\frac{2\pi ik}{1997}}</math>
 
Now, substitute this into the equation:
 
<math>\displaystyle z^{1997}-1=0</math>
 
<math>\displaystyle z^{1997}=1</math>
 
<math>\displaystyle z^{1997}=e^{2\pi ik}</math>
 
<math>\displaystyle z=e^{\frac{2\pi ik}{1997}}</math>


== See also ==
== See also ==
* [[1997 AIME Problems]]
* [[1997 AIME Problems]]

Revision as of 19:15, 7 March 2007

Problem

Let $\displaystyle v$ and $\displaystyle w$ be distinct, randomly chosen roots of the equation $\displaystyle z^{1997}-1=0$. Let $\displaystyle \frac{m}{n}$ be the probability that $\displaystyle\sqrt{2+\sqrt{3}}\le\left|v+w\right|$, where $\displaystyle m$ and $\displaystyle n$ are relatively prime positive integers. Find $\displaystyle m+n$.

Solution

The solution requires the use of Euler's formula:

$\displaystyle e^{i\theta}=\cos(\theta)+i\sin(\theta)$

If $\displaystyle \theta=2\pi ik$, where k is any constant, the equation reduces to:

$\displaystyle e^{2\pi ik}=\cos(2\pi k)+i\sin(2\pi k)$

$\displaystyle =1+0i$

$\displaystyle =1+0$

$\displaystyle =1$

Now, substitute this into the equation:

$\displaystyle z^{1997}-1=0$

$\displaystyle z^{1997}=1$

$\displaystyle z^{1997}=e^{2\pi ik}$

$\displaystyle z=e^{\frac{2\pi ik}{1997}}$

See also